Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Extensive research efforts have been dedicated to exploring the application of metamaterial beams for vibration suppression. However, most existing designs primarily focused on utilizing the translational motion of local resonators to create band gaps. To address this limitation of employing solo motion to induce a relatively narrow band gap, this study proposes a novel design: a rigid-elastic combined metamaterial beam utilizing both translational and rotational motions of local resonators. Theoretical framework development involves extending the transfer matrix method to incorporate rigid bodies, with analytical results validated through finite element simulations and experimental data. Compared to conventional metamaterial beams, the proposed design exhibits an additional wide band gap in the low-frequency region that can be utilized for broadband vibration suppression. A parametric study elucidates the influences of geometric parameters on band gap formation, followed by an exploration of the tunability of the proposed meta-beam through a graded scheme and optimization strategy. In particular, a multiple-objective optimization approach is employed to enlarge the vibration suppression region and enhance vibration suppression ability. The optimized meta-beam demonstrates a remarkable 45% wider dominant suppression region and a 14% lower average transmittance compared to a uniform model.

References

1.
Yao
,
J.
,
Liu
,
Z.
,
Liu
,
Y.
,
Wang
,
Y.
,
Sun
,
C.
,
Bartal
,
G.
,
Stacy
,
A. M.
, and
Zhang
,
X.
,
2008
, “
Optical Negative Refraction in Bulk Metamaterials of Nanowires
,”
Science
,
321
(
5891
), pp.
930
.
2.
Yao
,
S.
,
Zhou
,
X.
, and
Hu
,
G.
,
2008
, “
Experimental Study on Negative Effective Mass in a 1D Mass–Spring System
,”
New J. Phys.
,
10
(
4
), p.
043020
.
3.
Huang
,
H. H.
,
Sun
,
C. T.
, and
Huang
,
G. L.
,
2009
, “
On the Negative Effective Mass Density in Acoustic Metamaterials
,”
Int. J. Eng. Sci.
,
47
(
4
), pp.
610
617
.
4.
Huang
,
H. H.
, and
Sun
,
C. T.
,
2012
, “
Anomalous Wave Propagation in a One-Dimensional Acoustic Metamaterial Having Simultaneously Negative Mass Density and Young's Modulus
,”
J. Acoust. Soc. Am.
,
132
(
4
), pp.
2887
2895
.
5.
Hu
,
G.
,
Tang
,
L.
,
Liang
,
J.
,
Lan
,
C.
, and
Das
,
R.
,
2021
, “
Acoustic-Elastic Metamaterials and Phononic Crystals for Energy Harvesting: A Review
,”
Smart Mater. Struct.
,
30
(
8
), p.
085025
.
6.
Bergamini
,
A. E.
,
Zündel
,
M.
,
Flores Parra
,
E. A.
,
Delpero
,
T.
,
Ruzzene
,
M.
, and
Ermanni
,
P.
,
2015
, “
Hybrid Dispersive Media With Controllable Wave Propagation: A New Take on Smart Materials
,”
J. Appl. Phys.
,
118
(
15
), p.
154310
.
7.
Chen
,
S.
,
Wang
,
G.
,
Wen
,
J.
, and
Wen
,
X.
,
2013
, “
Wave Propagation and Attenuation in Plates With Periodic Arrays of Shunted Piezo-Patches
,”
J. Sound Vib.
,
332
(
6
), pp.
1520
1532
.
8.
Sharma
,
B.
, and
Sun
,
C.
,
2016
, “
Impact Load Mitigation in Sandwich Beams Using Local Resonators
,”
J. Sandw. Struct. Mater.
,
18
(
1
), pp.
50
64
.
9.
Sharma
,
B.
, and
Sun
,
C. T.
,
2016
, “
Local Resonance and Bragg Bandgaps in Sandwich Beams Containing Periodically Inserted Resonators
,”
J. Sound Vib.
,
364
, pp.
133
146
.
10.
Sugino
,
C.
,
Xia
,
Y.
,
Leadenham
,
S.
,
Ruzzene
,
M.
, and
Erturk
,
A.
,
2017
, “
A General Theory for Bandgap Estimation in Locally Resonant Metastructures
,”
J. Sound Vib.
,
406
, pp.
104
123
.
11.
Sigalas
,
M. M.
, and
Economou
,
E. N.
,
1992
, “
Elastic and Acoustic Wave Band Structure
,”
J. Sound Vib.
,
158
(
2
), pp.
377
382
.
12.
Kushwaha
,
M. S.
,
Halevi
,
P.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
,
B.
,
1993
, “
Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. Lett.
,
71
(
13
), pp.
2022
2025
.
13.
Kushwaha
,
M. S.
,
Halevi
,
P.
,
Martínez
,
G.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
,
B.
,
1994
, “
Theory of Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. B
,
49
(
4
), pp.
2313
2322
.
14.
Liu
,
Y.
,
Yu
,
D.
,
Li
,
L.
,
Zhao
,
H.
,
Wen
,
J.
, and
Wen
,
X.
,
2007
, “
Design Guidelines for Flexural Wave Attenuation of Slender Beams With Local Resonators
,”
Phys. Lett. A
,
362
(
5–6
), pp.
344
347
.
15.
Targoff
,
W. P.
,
1947
, “
The Associated Matrices of Bending and Coupled Bending-Torsion Vibrations
,”
J. Astronaut. Sci.
,
14
(
10
), pp.
579
582
.
16.
Zhu
,
R.
,
Liu
,
X. N.
,
Hu
,
G. K.
,
Sun
,
C. T.
, and
Huang
,
G. L.
,
2014
, “
A Chiral Elastic Metamaterial Beam for Broadband Vibration Suppression
,”
J. Sound Vib.
,
333
(
10
), pp.
2759
2773
.
17.
Banerjee
,
A.
,
2020
, “
Non-Dimensional Analysis of the Elastic Beam Having Periodic Linear Spring Mass Resonators
,”
Meccanica
,
55
(
5
), pp.
1181
1191
.
18.
Wen
,
S.
,
Xiong
,
Y.
,
Hao
,
S.
,
Li
,
F.
, and
Zhang
,
C.
,
2020
, “
Enhanced Band-Gap Properties of an Acoustic Metamaterial Beam With Periodically Variable Cross-Sections
,”
Int. J. Mech. Sci.
,
166
, p.
105229
.
19.
Lu
,
Z.-Q.
,
Zhao
,
L.
,
Ding
,
H.
, and
Chen
,
L.-Q.
,
2021
, “
A Dual-Functional Metamaterial for Integrated Vibration Isolation and Energy Harvesting
,”
J. Sound Vib.
,
509
, p.
116251
.
20.
Xie
,
L.
,
Xia
,
B.
,
Liu
,
J.
,
Huang
,
G.
, and
Lei
,
J.
,
2017
, “
An Improved Fast Plane Wave Expansion Method for Topology Optimization of Phononic Crystals
,”
Int. J. Mech. Sci.
,
120
, pp.
171
181
.
21.
Xiao
,
Y.
,
Wen
,
J.
, and
Wen
,
X.
,
2012
, “
Broadband Locally Resonant Beams Containing Multiple Periodic Arrays of Attached Resonators
,”
Phys. Lett. A
,
376
(
16
), pp.
1384
1390
.
22.
Hu
,
G.
,
Tang
,
L.
, and
Das
,
R.
,
2018
, “
Internally Coupled Metamaterial Beam for Simultaneous Vibration Suppression and Low Frequency Energy Harvesting
,”
J. Appl. Phys.
,
123
(
5
), p. 055107.
23.
Guo
,
Z.
,
Hu
,
G.
,
Sorokin
,
V.
,
Tang
,
L.
,
Yang
,
X.
, and
Zhang
,
J.
,
2021
, “
Low-Frequency Flexural Wave Attenuation in Metamaterial Sandwich Beam With Hourglass Lattice Truss Core
,”
Wave Motion
,
104
, p.
102750
.
24.
Yu
,
D.
,
Hu
,
G.
,
Guo
,
Z.
,
Hong
,
J.
, and
Yang
,
Y.
,
2023
, “
Topological Interface State Formation in an Hourglass Lattice Sandwich Meta-Structure
,”
Int. J. Mech. Sci.
,
246
, p.
108170
.
25.
Yuan
,
B.
,
Humphrey
,
V. F.
,
Wen
,
J.
, and
Wen
,
X.
,
2013
, “
On the Coupling of Resonance and Bragg Scattering Effects in Three-Dimensional Locally Resonant Sonic Materials
,”
Ultrasonics
,
53
(
7
), pp.
1332
1343
.
26.
Chen
,
Y.
, and
Wang
,
L.
,
2014
, “
Periodic Co-Continuous Acoustic Metamaterials With Overlapping Locally Resonant and Bragg Band Gaps
,”
Appl. Phys. Lett.
,
105
(
19
), p.
191907
.
27.
Lee
,
G.
,
Lee
,
D.
,
Park
,
J.
,
Jang
,
Y.
,
Kim
,
M.
, and
Rho
,
J.
,
2022
, “
Piezoelectric Energy Harvesting Using Mechanical Metamaterials and Phononic Crystals
,”
Commun. Phys.
,
5
(
1
), p.
94
.
28.
Deng
,
Z.
,
Zhang
,
B.
,
Zhang
,
K.
,
Peng
,
L.
,
Liu
,
P.
,
Sun
,
Q.
, and
Pang
,
F.
,
2024
, “
The Coupled Band Gap of the Double Beam With Attached Periodic Spring-Mass Structure
,”
Mech. Syst. Signal Process
,
208
, p.
111009
.
29.
Fang
,
X.
,
Wen
,
J.
,
Bonello
,
B.
,
Yin
,
J.
, and
Yu
,
D.
,
2017
, “
Ultra-Low and Ultra-Broad-Band Nonlinear Acoustic Metamaterials
,”
Nat. Commun.
,
8
(
1
), p.
1288
.
30.
Xia
,
Y.
,
Ruzzene
,
M.
, and
Erturk
,
A.
,
2019
, “
Dramatic Bandwidth Enhancement in Nonlinear Metastructures Via Bistable Attachments
,”
Appl. Phys. Lett.
,
114
(
9
), p.
093501
.
31.
Zhao
,
J.
,
Zhou
,
G.
,
Zhang
,
D.
,
Kovacic
,
I.
,
Zhu
,
R.
, and
Hu
,
H.
,
2023
, “
Integrated Design of a Lightweight Metastructure for Broadband Vibration Isolation
,”
Int. J. Mech. Sci.
,
244
, p.
108069
.
32.
Zhao
,
B.
,
Thomsen
,
H. R.
,
Pu
,
X.
,
Fang
,
S.
,
Lai
,
Z.
,
Damme
,
B. V.
,
Bergamini
,
A.
,
Chatzi
,
E.
, and
Colombi
,
A.
,
2024
, “
A Nonlinear Damped Metamaterial: Wideband Attenuation With Nonlinear Bandgap and Modal Dissipation
,”
Mech. Syst. Signal Process
,
208
, p.
111079
.
33.
Ruzzene
,
M.
, and
Baz
,
A.
,
1999
, “
Control of Wave Propagation in Periodic Composite Rods Using Shape Memory Inserts
,”
ASME J. Vib. Acoust.
,
122
(
2
), pp.
151
159
.
34.
Ruzzene
,
M.
, and
Baz
,
A.
,
2000
, “
Attenuation and Localization of Wave Propagation in Periodic Rods Using Shape Memory Inserts
,”
Smart Mater. Struct.
,
9
(
6
), p.
805
816
.
35.
Chen
,
Y. Y.
,
Huang
,
G. L.
, and
Sun
,
C. T.
,
2014
, “
Band Gap Control in an Active Elastic Metamaterial With Negative Capacitance Piezoelectric Shunting
,”
ASME J. Vib. Acoust.
,
136
(
6
), p.
061008
.
36.
Hu
,
G.
,
Austin
,
A. C. M.
,
Sorokin
,
V.
, and
Tang
,
L.
,
2021
, “
Metamaterial Beam With Graded Local Resonators for Broadband Vibration Suppression
,”
Mech. Syst. Signal Process
,
146
, p.
106982
.
37.
Alshaqaq
,
M.
, and
Erturk
,
A.
,
2021
, “
Graded Multifunctional Piezoelectric Metastructures for Wideband Vibration Attenuation and Energy Harvesting
,”
Smart Mater. Struct.
,
30
(
1
), p.
015029
.
38.
Jian
,
Y.
,
Hu
,
G.
,
Tang
,
L.
,
Tang
,
W.
,
Abdi
,
M.
, and
Aw
,
K. C.
,
2023
, “
Analytical and Experimental Study of a Metamaterial Beam With Grading Piezoelectric Transducers for Vibration Attenuation Band Widening
,”
Eng. Struct.
,
275
, p.
115091
.
39.
Jian
,
Y.
,
Tang
,
L.
,
Hu
,
G.
,
Li
,
Z.
, and
Aw
,
K. C.
,
2022
, “
Design of Graded Piezoelectric Metamaterial Beam With Spatial Variation of Electrodes
,”
Int. J. Mech. Sci.
,
218
, p.
107068
.
40.
Yao
,
D.
,
Xiong
,
M.
,
Luo
,
J.
, and
Yao
,
L.
,
2022
, “
Flexural Wave Mitigation in Metamaterial Cylindrical Curved Shells With Periodic Graded Arrays of Multi-Resonator
,”
Mech. Syst. Signal Process
,
168
, p.
108721
.
41.
Zhao
,
P.
,
Zhang
,
K.
,
Qi
,
L.
, and
Deng
,
Z.
,
2022
, “
3D Chiral Mechanical Metamaterial for Tailored Band Gap and Manipulation of Vibration Isolation
,”
Mech. Syst. Signal Process
,
180
, p.
109430
.
42.
Wang
,
Y.
,
Yang
,
J.
,
Chen
,
Z.
,
Gong
,
X.
,
Du
,
H.
,
Zhang
,
S.
,
Li
,
W.
, and
Sun
,
S.
,
2022
, “
Investigation of a Novel MRE Metamaterial Sandwich Beam With Real-Time Tunable Band Gap Characteristics
,”
J. Sound Vib.
,
527
, p.
116870
.
43.
Gao
,
N.
,
Zhang
,
Z.
,
Tang
,
L.
,
Hou
,
H.
, and
Chen
,
K.
,
2021
, “
Optimal Design of Broadband Quasi-Perfect Sound Absorption of Composite Hybrid Porous Metamaterial Using TLBO Algorithm
,”
Appl. Acoust.
,
183
, p.
108296
.
44.
Wu
,
X.
,
Li
,
Y.
, and
Zuo
,
S.
,
2020
, “
The Study of a Locally Resonant Beam With Aperiodic Mass Distribution
,”
Appl. Acoust.
,
165
, p.
107306
.
45.
Jian
,
Y.
,
Tang
,
L.
,
Hu
,
G.
,
Wang
,
Y.
, and
Aw
,
K. C.
,
2022
, “
Adaptive Genetic Algorithm Enabled Tailoring of Piezoelectric Metamaterials for Optimal Vibration Attenuation
,”
Smart Mater. Struct.
,
31
(
7
), p.
075026
.
46.
Li
,
H.
,
Yao
,
H.
,
Cao
,
Y.
,
Jia
,
R.
, and
Dou
,
J.
,
2023
, “
Chiral Metamaterial-Inerter Nonlinear Energy Sink for Torsional Vibration Suppression of the Rotor System
,”
Mech. Syst. Signal Process
,
200
, p.
110640
.
47.
Kennedy
,
J.
,
2006
, “Swarm Intelligence,”
Handbook of Nature-Inspired and Innovative Computing: Integrating Classical Models With Emerging Technologies
,
A. Y.
Zomaya
, ed.,
Springer US
,
Boston, MA
, pp.
187
219
.
48.
Khalili
,
A.
, and
Babamir
,
S. M.
,
2015
, “
Makespan Improvement of PSO-Based Dynamic Scheduling in Cloud Environment
,”
2015 23rd Iranian Conference on Electrical Engineering
,
Tehran, Iran
,
May 13–15
, pp.
613
618
.
49.
Sheng
,
W.
,
Peng
,
G. D.
,
Yang
,
N.
,
Kang
,
Y.
, and
Söffker
,
D.
,
2020
, “
Suppression of Sweeping Fluctuation of Fabry-Perot Filter in Fiber Bragg Grating Interrogation Using PSO-Based Self-Adaptive Sampling
,”
Mech. Syst. Signal Process
,
142
, p.
106724
.
50.
Nabi
,
S.
,
Ahmad
,
M.
,
Ibrahim
,
M.
, and
Hamam
,
H.
,
2022
, “
AdPSO: Adaptive PSO-Based Task Scheduling Approach for Cloud Computing
,”
Sensors
,
22
(
3
), p.
920
.
51.
Lalwani
,
S.
,
Singhal
,
S.
,
Kumar
,
R.
, and
Gupta
,
N.
,
2013
, “
A Comprehensive Survey: Applications of Multi-Objective Particle Swarm Optimization (MOPSO) Algorithm
,”
Trans. Comb.
,
2
(
1
), pp.
39
101
.
52.
Pareek
,
C. M.
,
Tewari
,
V. K.
, and
Machavaram
,
R.
,
2023
, “
Multi-objective Optimization of Seeding Performance of a Pneumatic Precision Seed Metering Device Using Integrated ANN-MOPSO Approach
,”
Eng. Appl. Artif. Intell.
,
117
, p.
105559
.
53.
Ehyaei
,
M. A.
,
Ahmadi
,
A.
,
Assad
,
M. E. H.
, and
Salameh
,
T.
,
2019
, “
Optimization of Parabolic Through Collector (PTC) With Multi-Objective Swarm Optimization (MOPSO) and Energy, Exergy and Economic Analyses
,”
J. Clean. Prod.
,
234
, pp.
285
296
.
54.
He
,
M.-X.
,
Lyu
,
X.
,
Zhai
,
Y.
,
Tang
,
Y.
,
Yang
,
T.
, and
Ding
,
Q.
,
2021
, “
Multi-Objective Optimal Design of Periodically Stiffened Panels for Vibration Control Using Data-Driven Optimization Method
,”
Mech. Syst. Signal Process
,
160
, p.
107872
.
55.
Coello
,
C. A. C.
,
Pulido
,
G. T.
, and
Lechuga
,
M. S.
,
2004
, “
Handling Multiple Objectives With Particle Swarm Optimization
,”
IEEE Trans. Evol. Comput.
,
8
(
3
), pp.
256
279
.
56.
Al Ba'ba'a
,
H. B.
,
Willey
,
C. L.
,
Chen
,
V. W.
,
Juhl
,
A. T.
, and
Nouh
,
M.
,
2023
, “
Theory of Truncation Resonances in Continuum Rod-Based Phononic Crystals With Generally Asymmetric Unit Cells
,”
Adv. Theory Simul.
,
6
(
2
), p.
2200700
.
57.
Yu
,
D.
,
Hu
,
G.
,
Ding
,
W.
,
Yang
,
Y.
, and
Hong
,
J.
,
2023
, “
Zero-Thermal-Expansion Metamaterial With Broadband Vibration Suppression
,”
Int. J. Mech. Sci.
,
258
, p.
108590
.
You do not currently have access to this content.