This paper is to develop a unified algorithm to predict vibration of spinning asymmetric rotors with arbitrary geometry and complexity. Specifically, the algorithm is to predict vibration response of spinning rotors from a ground-based observer. As a first approximation, the effects of housings and bearings are not included in this analysis. The unified algorithm consists of three steps. The first step is to conduct a finite element analysis on the corresponding stationary rotor to extract natural frequencies and mode shapes. The second step is to represent the vibration of the spinning rotor in terms of the mode shapes and their modal response in a coordinate system that is rotating with the spinning rotor. The equation of motion governing the modal response is derived through use of the Lagrange equation. To construct the equation of motion, explicitly, the results from the finite element analysis will be used to calculate the gyroscopic matrix, centrifugal stiffening (or softening) matrix, and generalized modal excitation vector. The third step is to solve the equation of motion to obtain the modal response, which, in turn, will lead to physical response of the rotor for a rotor-based observer or for a ground-based observer through a coordinate transformation. Results of the algorithm indicate that Campbell diagrams of spinning asymmetric rotors will not only have traditional forward and backward primary resonances as in axisymmetric rotors, but also have secondary resonances caused by higher harmonics resulting from the mode shapes. Finally, the algorithm is validated through a calibrated experiment using rotating disks with evenly spaced radial slots. Qualitatively, all measured vibration spectra show significant forward and backward primary resonances as well as secondary resonances as predicted in the theoretical analysis. Quantitatively, measured primary and secondary resonance frequencies agree extremely well with those predicted from the algorithm with mostly <3.5% difference.

1.
Childs
,
D.
, 1993,
Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis
,
Wiley
,
New York
.
2.
Chivens
,
D. R.
, and
Nelson
,
H. D.
, 1975, “
The Natural Frequencies and Critical Speeds of a Rotating, Flexible Shaft-Disk System
,”
ASME J. Eng. Ind.
0022-0817,
97
, pp.
881
886
.
3.
Dopkin
,
J. A.
, and
Shoup
,
T. E.
, 1974, “
Rotor Resonant Speed Reduction Caused by Flexibility of Disks
,”
ASME J. Eng. Ind.
0022-0817,
96
, pp.
1328
1333
.
4.
Flowers
,
G. T.
, and
Ryan
,
S. G.
, 1993, “
Development of a Set of Equations for Incorporating Disk Flexibility Effects in Rotordynamics Analyses
,”
ASME J. Eng. Gas Turbines Power
0742-4795, Vol.
115
, pp.
227
233
.
5.
Flower
,
G. T.
, 1996, “
Modeling of an Elastic Disk With Finite Hub Motions and Small Elastic Vibrations With Application to Rotordynamics
,”
ASME J. Vibr. Acoust.
0739-3717,
118
, pp.
10
15
.
6.
Bansal
,
P. N.
, and
Kirk
,
R. G.
, 1975, “
Stability and Damped Critical Speeds of Rotor-Bearing Systems
,”
ASME J. Eng. Ind.
0022-0817,
97
, pp.
1325
1332
.
7.
Gash
,
R.
, 1976, “
Vibration of Larger Turbo-Rotors in Fluid-Film Bearings on an Elastic Foundation
,”
J. Sound Vib.
0022-460X,
47
, pp.
53
73
.
8.
Fan
,
U. J.
, and
Noah
,
S. T.
, 1989, “
Vibration Analysis of Rotor Systems Using Reduced Subsystem Models
,”
J. Propul. Power
0748-4658,
5
, pp.
602
609
.
9.
Rieger
,
N. F.
, and
Zhou
,
S.
, 1998, “
An Instability Analysis Procedure for Three-Level Multi-Bearing Rotor-Foundation Systems
,”
ASME J. Vibr. Acoust.
0739-3717,
120
, pp.
753
762
.
10.
Earles
,
L. L.
,
Palazzolo
,
A. B.
,
Lee
,
C. K.
, and
Gerhold
,
C. H.
, 1988, “
Hybrid Finite Element-Boundary Element Simulation of Rotating Machinery Supported on Flexible Foundation and Soil
,”
ASME J. Vibr. Acoust.
0739-3717,
110
, pp.
300
306
.
11.
Nicholas
,
J. C.
, and
Barrett
,
L. E.
, 1986, “
The Effect of Bearing Support Flexibility on Critical Speed Prediction
,”
ASLE Trans.
0569-8197,
29
, pp.
329
338
.
12.
Stephenson
,
R. W.
, and
Rouch
,
K. E.
, 1992, “
Generating Matrices of the Foundation Structure of a Rotor System From Test Data
,”
J. Sound Vib.
0022-460X,
154
, pp.
467
484
.
13.
Vázquez
,
J. A.
,
Barrett
,
L. E.
, and
Flack
,
R. D.
, 2001, “
A Flexible Rotor on Flexible Bearing Supports: Stability and Unbalance Response
,”
ASME J. Vibr. Acoust.
0739-3717,
123
, pp.
137
144
.
14.
Shen
,
I. Y.
, 2000, “
Vibration of Flexible Rotating Disks
,”
Shock Vib. Dig.
0583-1024,
32
(
4
), pp.
267
272
.
15.
Shen
,
I. Y.
, and
Ku
,
C.-P. Roger
, 1997, “
A Non-Classical Vibration Analysis of Multiple Rotating Disks/Shaft Assembly
,”
ASME J. Appl. Mech.
0021-8936,
64
, pp.
165
174
.
16.
Shen
,
J. Y.
,
Tseng
,
C. W.
, and
Shen
,
I. Y.
, 2004, “
Vibration of Rotating Disk/Spindle Systems With Flexible Housing/Stator Assemblies
,”
J. Sound Vib.
0022-460X,
271
(
3–5
), pp.
725
756
.
17.
Chen
,
Y.
,
Zhao
,
H. B.
,
Shen
,
Z. P.
,
Grieger
,
I.
, and
Kroplin
,
B. H.
, 1993, “
Vibrations of High-Speed Rotating Shells With Calculations for Cylindrical Shells
,”
J. Sound Vib.
0022-460X,
160
(
1
), pp.
137
160
.
18.
Guo
,
D.
,
Chu
,
F. L.
, and
Zheng
,
Z. C.
, 2001, “
The Influence of Rotation on Vibration of a Thick Cylindrical Shell
,”
J. Sound Vib.
0022-460X,
242
(
3
), pp.
487
505
.
19.
Childs
,
D. W.
, 1976, “
A Modal Transient Simulation Model for Flexible Asymmetric Rotors
,”
ASME J. Eng. Ind.
0022-0817,
98
, pp.
312
318
.
20.
Genta
,
G.
, 1988, “
Whirling of Unsymmetrical Rotors: A Finite Element Approach Based on Complex Coordinates
,”
J. Sound Vib.
0022-460X,
124
, pp.
27
53
.
21.
Kang
,
Y.
,
Shih
,
Y. P.
, and
Lee
,
A. C.
, 1992, “
Investigation on the Steady-State Responses of Asymmetric Rotors
,”
ASME J. Vibr. Acoust.
0739-3717,
114
, pp.
194
208
.
22.
Chen
,
L. W.
, and
Peng
,
W. K.
, 1997, “
Stability Analysis of a Timoshenko Shaft With Dissimilar Lateral Moments of Inertia
,”
J. Sound Vib.
0022-460X,
207
, pp.
33
46
.
23.
Ganesan
,
R.
, 2000, “
Effects of Bearing and Shaft Asymmetries on the Instability of Rotors Operating at Near-Critical Speeds
,”
Mech. Mach. Theory
0094-114X,
35
(
5
), pp.
737
752
.
24.
Oncescu
,
F.
,
Lakis
,
A. A.
, and
Ostiguy
,
G.
, 2001, “
Investigation of the Stability and Steady State Response of Asymmetric Rotors Using Finite Element Formulation
,”
J. Sound Vib.
0022-460X,
245
(
2
), pp.
303
328
.
25.
Raffa
,
F. A.
, and
Vatta
,
F.
, 2001, “
The Dynamic Stiffness Matrix of a Rotating Asymmetric Bernoulli-Euler Shaft
,”
ASME J. Vibr. Acoust.
0739-3717,
123
, pp.
408
411
.
26.
Sekhar
,
A. S.
, and
Srinivas
,
B. N.
, 2002, “
Vibration Characteristics of Slotted Shafts
,”
J. Sound Vib.
0022-460X,
251
(
4
), pp.
621
630
.
27.
Ahn
,
T. K.
, and
Mote
,
C. D.
, 1998, “
Mode Identification of a Rotating Disk
,”
Exp. Mech.
0014-4851,
38
, pp.
250
254
.
28.
Kim
,
H. R.
, and
Renshaw
,
A. A.
, 1998, “
Asymmetric, Speed Dependent Tensioning of Circular Rotating Disks
,”
J. Sound Vib.
0022-460X,
218
, pp.
65
80
.
29.
Berger
,
S.
,
Aubry
,
E.
, and
Marquet
,
F.
,
Thomann
,
G.
, 2003, “
Experimental Modal Shape Identification of a Rotating Asymmetric Disk Subjected to Multiple-Frequency Excitation: Use of Finite Impulse Response Filters
,”
Exp. Tech.
0732-8818,
27
, pp.
44
48
.
30.
Tseng
,
J. G.
, and
Wickert
,
J. A.
, 1994, “
On the Vibration of Bolted Plate and Flange Assemblies
,”
ASME J. Vibr. Acoust.
0739-3717,
116
, pp.
468
473
.
31.
Tseng
,
J. G.
, and
Wickert
,
J. A.
, 1994, “
Vibration of an Eccentrically Clamped Annular Plate
,”
ASME J. Vibr. Acoust.
0739-3717,
116
, pp.
155
160
.
32.
Parker
,
R. G.
, and
Mote
,
C. D.
, Jr.
, 1996, “
Exact Perturbation for the Vibration of Almost Annular or Circular Plates
,”
ASME J. Vibr. Acoust.
0739-3717,
118
, pp.
436
445
.
33.
Parker
,
R. G.
, and
Mote
,
C. D.
Jr.
, 1996, “
Vibration and Coupling Phenomena in Asymmetric Disk-Spindle Systems
,”
ASME J. Appl. Mech.
0021-8936,
63
, pp.
953
961
.
34.
Shen
,
I. Y.
, 1994, “
Vibration of Rotationally Periodic Structures
,”
J. Sound Vib.
0022-460X,
172
, pp.
459
470
.
35.
Chang
,
J. Y.
, and
Wickert
,
J. A.
, 2001, “
Response of Modulated Doublet Modes to Travelling Wave Excitation
,”
J. Sound Vib.
0022-460X,
242
(
1
), pp.
69
83
.
36.
Chang
,
J. Y.
, and
Wickert
,
J. A.
, 2002, “
Measurement and Analysis of Modulated Doublet Mode Response in Mock Bladed Disks
,”
J. Sound Vib.
0022-460X,
250
(
3
), pp.
379
400
.
37.
Bittner
,
H.
, and
Shen
,
I. Y.
, 1999, “
Taming Disk/Spindle Vibrations Through Aerodynamic Bearings and Acoustically Tuned-Mass Dampers
,”
IEEE Trans. Magn.
0018-9464,
35
(
2
), pp.
827
832
.
You do not currently have access to this content.