Whenever a tuned-mass damper is attached to a primary system, motion of the absorber body in more than one degree of freedom (DOF) relative to the primary system can be used to attenuate vibration of the primary system. In this paper, we propose that more than one mode of vibration of an absorber body relative to a primary system be tuned to suppress single-mode vibration of a primary system. We cast the problem of optimization of the multi-degree-of-freedom connection between the absorber body and primary structure as a decentralized control problem and develop optimization algorithms based on the H2 and H-infinity norms to minimize the response to random and harmonic excitations, respectively. We find that a two-DOF absorber can attain better performance than the optimal SDOF absorber, even for the case where the rotary inertia of the absorber tends to zero. With properly chosen connection locations, the two-DOF absorber achieves better vibration suppression than two separate absorbers of optimized mass distribution. A two-DOF absorber with a negative damper in one of its two connections to the primary system yields significantly better performance than absorbers with only positive dampers.

1.
Den Hartog
,
J. P.
, 1947,
Mechanical Vibration
,
McGraw-Hill
, New York.
2.
Brock
,
J.
, 1946, “
A Note on the Damped Vibration Absorber
,”
ASME J. Appl. Mech.
0021-8936,
68
(
4
), pp.
A
284
.
3.
Snowdon
,
J. C.
, 1968,
Vibration and Shock in Damped Mechanical Systems
,
Wiley
, New York.
4.
Warburton
,
G.
, 1982, “
Optimum Absorber Parameters for Various Combinations of Response and Excitation Parameters
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
10
, pp.
381
401
.
5.
Asani
,
T.
,
Nishihara
,
O.
, and
Baz
,
A. M.
, 2002, “
Analytical Solutions to H∞ and H2 Optimization of Dynamic Vibration Absorber Attached to Damped Linear Systems
,”
J. Vibr. Acoust.
0739-3717,
124
, pp.
67
78
.
6.
Xu
,
K.
, and
Igusa
,
T.
, 1992, “
Dynamic Characteristics of Multiple Substructures With Closely Spaced Frequencies
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
21
, pp.
1059
1070
.
7.
Zuo
,
L.
, and
Nayfeh
,
S.
, 2005, “
Optimization of the Individual Stiffness and Damping Parameters in Multiple Tuned Mass Dampers
,”
ASME J. Vibr. Acoust.
0739-3717,
127
, pp.
77
83
.
8.
Kitis
,
L.
,
Wang
,
B. P.
, and
Pilkey
,
W. D.
, 1983, “
Vibration Reduction Over a Frequency Range
,”
J. Sound Vib.
0022-460X,
89
, pp.
559
569
.
9.
Rice
,
H. J.
, 1993, “
Design of Multiple Vibration Absorber Systems Using Modal Data
,”
J. Sound Vib.
0022-460X,
160
, pp.
378
385
.
10.
Dahlbe
,
T.
, 1989, “
On Optimal Use of the Mass of a Dynamic Vibration Absorber
,”
J. Sound Vib.
0022-460X,
132
, pp.
518
522
.
11.
Zuo
,
L.
, 2002, “
Optimal Control With Structure Constraints and its Application to the Design of Passive Mechanical Systems
,” Master’s thesis, Massachusetts Institute of Technology.
12.
Zuo
,
L.
, and
Nayfeh
,
S.
, 2002, “
Design of Multi-Degree-of-Freedom Tuned-Mass Dampers: A Minimax Approach
,” in
43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, AIAA 2002–1283.
13.
Zuo
,
L.
, and
Nayfeh
,
S.
, 2004, “
Minimax Optimization of Multi-Degree-of-Freedom Tuned-Mass Dampers
,”
J. Sound Vib.
0022-460X,
272
, pp.
893
908
.
14.
Verdirame
,
J.
, and
Nayfeh
,
S.
, 2003, “
Design of Multi-Degree-of-Freedom Tuned Mass Dampers Based on Eigenvalue Perturbation
,” in
44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, AIAA 2003–1686.
15.
Zuo
,
L.
, and
Nayfeh
,
S.
, 2002, “
Design of Passive Mechanical Systems via Decentralized Control Techniques
,” in
43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, AIAA 2002–1282.
16.
Zhou
,
K.
,
Doyle
,
J. C.
, and
Glover
,
K.
, 1995,
Robust and Optimal Control
,
Prentice-Hall
, New Jersey.
17.
Mendel
,
J. M.
, 1974, “
A Concise Derivation of Optimal Constant Limited State Feedback Gains Systems
,”
IEEE Trans. Autom. Control
0018-9286,
AC-19
, pp.
447
448
.
18.
Bertsekas
,
D. P.
, 1995,
Nonlinear Programming
,
Athena Scientific
.
19.
El Ghaoui
,
L.
,
Oustry
,
F.
, and
AitRami
,
M.
, 1997, “
A Cone Complementarity Linearization Algorithm for Static Output-Feedback and Related Problems
,”
IEEE Trans. Autom. Control
0018-9286,
42
(
8
), pp.
1171
1176
.
20.
Geromel
,
J.
,
de Souza
,
C.
, and
Skelton
,
R.
, 1998, “
Static Output-Feedback Controllers: Stability and Convexity
,”
IEEE Trans. Autom. Control
0018-9286,
43
(
1
), pp.
120
125
.
21.
Goh
,
K. C.
,
Turan
,
L.
, and
Safonov
,
M. G.
, 1994, “
Bilinear Matrix Inequality Properties and Computational Methods
,” in
Proceedings of the American Control Conference
, pp.
850
855
.
22.
Zhai
,
G.
,
Ikeda
,
M.
, and
Fujisaki
,
Y.
, 2001, “
Decentralized H∞ Controller Design: A Matrix Inequality Approach Using a Homotopy Method
,”
Automatica
0005-1098,
37
, pp.
565
572
.
23.
Cao
,
Y.-Y.
,
Sun
,
Y.-X.
, and
Mao
,
W.-J.
, 1998, “
Output Feedback Decentralized Stabilization: ILMI Approach
,”
Syst. Control Lett.
0167-6911,
35
, pp.
183
194
.
24.
Kitis
,
L.
,
Pilkey
,
W.
, and
Wang
,
B.
, 1984, “
Optimal Frequency Response Shaping by Appendant Structures
,”
J. Sound Vib.
0022-460X,
95
, pp.
161
175
.
You do not currently have access to this content.