A numerical study of the use of electrorheological (ER) fluids and piezoelectric (PZT) actuators to control random vibrations of stiffened composite panels is presented. Active control of stiffness and damping is provided by the ER fluids and direct feedback control is provided by the PZT’s. New forms of transfer matrices are developed to include the effects of these smart materials. The modal equations of an equivalent uniform panel are converted into state-space form and digital stochastic feedback control is implemented. PZT direct feedback control is compared with digital stochastic feedback control. Parametric studies quantify the effect of actuator size and number, and ER fluid action.

1.
Banks, H. T., Silcox, R. J., and Smith, R. C., 1992, “The Modeling and Control of Acoustic/structure Interaction Problems via Piezoceramic Actuators: 2-d Numerical Examples,” Active Control of Noise and Vibration, ASME, Vol. 38, pp. 83–94.
2.
Balachandran
,
B.
,
Sampath
,
A.
, and
Park
,
J.
,
1996
, “
Active Control of Interior Noise in a Three-dimensional Enclosure
,”
Smart Mater. Struct.
,
5
(
1
), pp.
89
97
.
3.
Crawley
,
E. F.
, and
de Luis
,
J.
,
1987
, “
Use of Piezoelectric Actuators as Elements of Intelligent Structures
,”
AIAA J.
,
25
(
10
), pp.
1373
1385
.
4.
Koshigoe
,
S.
, and
Murdock
,
J. W.
,
1993
, “
A Unified Analysis of Both Active and Passive Damping for a Plate with Piezoelectric Transducers
,”
J. Acoust. Soc. Am.
,
93
(
1
), pp.
346
355
.
5.
Fuller
,
C. R.
,
Rogers
,
C. A.
, and
Robertshaw
,
H. H.
,
1992
, “
Control of Sound Radiation with Active/adaptive Structures
,”
J. Sound Vib.
,
157
(
1
), pp.
19
39
.
6.
Crawley
,
E. F.
,
1994
, “
Intelligent Structures for Aerospace: A Technology Overview and Assessment
,”
AIAA J.
,
32
(
8
), pp.
1689
1699
.
7.
Stanway
,
R.
,
Sproston
,
J. L.
, and
El-Wahed
,
A. K.
,
1996
, “
Applications of Electrorheological Fluids in Vibration Control: A Survey
,”
Smart Mater. Struct.
,
5
(
4
), pp.
464
482
.
8.
Park
,
C.
, and
Chopra
,
I.
,
1996
, “
Modeling Piezoceramic Actuation of Beams in Torsion
,”
AIAA J.
,
34
(
12
), pp.
2582
2589
.
9.
Rahn
,
C. D.
, and
Joshi
,
S.
,
1998
, “
Modeling and Control of an Electrorheological Sandwich Beam
,”
ASME J. Vibr. Acoust.
,
120
, pp.
221
227
.
10.
Yalcintas
,
M.
, and
Coulter
,
J. P.
,
1995
, “
An Adaptive Beam Model with Electrorheological Material Based Applications
,”
J. Intell. Mater. Syst. Struct.
,
6
(
4
), pp.
498
507
.
11.
Choi
,
Y.
,
Sprecher
,
A. F.
, and
Conrad
,
H.
,
1990
, “
Vibration Characteristics of a Composite Beam Containing an Electrorheological Fluid
,”
J. Intell. Mater. Syst. Struct.
,
1
, pp.
91
104
.
12.
Yang
,
J. S.
, and
Tiersten
,
H. F.
,
1997
, “
Elastic Analysis of the Transfer of Shearing Stress from Partially Electroded Piezoelectric Actuators to Composite Plates in Cylindrical Bending
,”
Smart Mater. Struct.
,
6
(
3
), pp.
333
340
.
13.
Sung
,
C. K.
,
Chen
,
T. F.
, and
Chen
,
S. G.
,
1996
, “
Piezoelectric Modal Sensor/actuator Design for Monitoring/generating Flexural and Torsional Vibrations of Cylindrical Shells
,”
Trans. ASME
,
118
, pp.
48
55
.
14.
Goh
,
C. J.
, and
Caughey
,
T. K.
,
1985
, “
On the Stability Problem Caused by Finite Actuator Dynamics in the Collocated Control of Large Space Structures
,”
Int. J. Control
,
41
(
3
), pp.
787
802
.
15.
Wang
,
C. Y.
, and
Vaicaitis
,
R.
,
1998
, “
Active Control of Vibrations and Noise of Double Wall Cylindrical Shells
,”
J. Sound Vib.
,
216
(
5
), pp.
865
888
.
16.
Dogan
,
V.
, and
Vaicaitis
,
R.
,
1999
, “
Active Control of Nonlinear Cylindrical Shell Vibrations
,”
J. Intell. Mater. Syst. Struct.
,
10
(
5
), pp.
422
429
.
17.
Oz
,
H.
, and
Meirovitch
,
L.
,
1983
, “
Stochastic Independent Modal-space Control of Distributed-parameter Systems
,”
J. Optim. Theory Appl.
,
40
(
1
), pp.
121
154
.
18.
Meirovitch
,
L.
, and
Oz
,
H.
,
1984
, “
Digital Stochastic Control of Distributed-parameter Systems
,”
J. Optim. Theory Appl.
,
43
(
2
), pp.
307
325
.
19.
Meirovitch
,
L.
, and
Baruh
,
H.
,
1982
, “
Control of Self-adjoint Distributed-parameter Systems
,”
J. Guid. Control
5
(
1
), pp.
60
66
.
20.
Bai
,
M. R.
, and
Lin
,
G. M.
,
1996
, “
The Development of a DSP-based Active Small Amplitude Vibration Control System for Flexible Beams by Using the LQG Algorithms and Intelligent Materials
,”
J. Sound Vib.
,
198
(
4
), pp.
411
427
.
21.
Kwakernaak, H., and Sivan, R., 1972, Linear Optimal Control Systems, John Wiley and Sons, New York.
22.
Meditch, J. S., 1969, Stochastic Optimal Linear Estimation and Control, McGraw-Hill, New York.
23.
Meirovitch, L., 1990, Dynamics and Control of Structures, John Wiley and Sons, New York.
24.
Meirovitch
,
L.
, and
Baruh
,
H.
,
1981
, “
Effect of Damping on Observation Spillover Instability
,”
J. Optim. Theory Appl.
,
35
(
1
), pp.
31
44
.
25.
Lindberg
, Jr.,
R. E.
, and
Longman
,
R. W.
,
1984
, “
On the Number and Placement of Actuators for Independent Modal Space Control
,”
Journal of Guidance
,
7
(
2
), pp.
215
221
.
26.
Lin
,
Y. K.
, and
Donaldson
,
B. K.
,
1969
, “
A Brief Survey of Transfer Matrix Techniques with Special Reference to the Analysis of Aircraft Panels
,”
J. Sound Vib.
,
10
(
1
), pp.
103
143
.
27.
Lyrintzis
,
C. S.
, and
Vaicaitis
,
R.
,
1989
, “
Random Response and Noise Transmission of Discretely Stiffened Composite Panels
,”
J. Aircr.
,
27
(
2
), pp.
176
184
.
28.
Lin, Y. K., 1967, Probabilistic Theory of Structural Dynamics, McGraw-Hill, New York.
29.
Dosch
,
J. J.
,
Inman
,
D. J.
, and
Garcia
,
E. E.
,
1992
, “
A Self-Sensing Piezoelectric Actuator for Collocated Control
,”
J. Intell. Mater. Syst. Struct.
,
3
, pp.
166
185
.
30.
Poulin, K. C., 1999, “Active Control of Random Vibrations of Stiffened Composite Panels Using Intelligent Materials,” Ph.D. thesis, Columbia University, New York, NY.
31.
Lee
,
C. K.
,
1990
, “
Theory of Laminated Piezoelectric Plates for the Design of Distributed Sensors/actuators. Part I: Governing Equations and Reciprocal Relationships
,”
J. Acoust. Soc. Am.
,
87
(
3
), pp.
1144
1158
.
32.
Mahjoob, M. J., Martin, H. R., and Ismail, F., 1993, “Distributed Vibration Control Using Electrorheological Fluids,” Proceedings of the 11th International Modal Analysis Conference, pp. 768–774.
33.
Mead
,
D. J.
, and
Markus
,
S.
,
1969
, “
The Forced Vibration of a Three-layer, Damped Sandwich Beam with Arbitrary Boundary Conditions
,”
J. Sound Vib.
,
10
(
2
), pp.
163
175
.
34.
Gamota
,
D. R.
, and
Filisko
,
F. E.
,
1991
, “
Dynamic Mechanical Studies of Electrorheological Materials: Moderate Frequencies
,”
J. Rheol.
,
35
(
3
), pp.
399
425
.
35.
Mikulas, M. M., and McElman, J. A., 1965, “On Free Vibrations of Eccentrically Stiffened Cylindrical Shells and Flat Plates,” NASA Technical Report TN D-3010.
36.
Shinozuka
,
M.
, and
Jan
,
C. M.
,
1972
, “
Digital Simulation of Random Processes and Its Applications
,”
J. Sound Vib.
,
25
(
1
), pp.
111
128
.
37.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, Cambridge, UK.
38.
Amorosi, J., 1997, “Active Control of Vibrations and Noise by Electrorheological Fluids and Piezoelectric Materials,” Ph.D. thesis, Columbia University, New York, NY.
You do not currently have access to this content.