In this paper, a higher order rectangular plate bending element based on a Higher Order Shear Deformation Theory (HSDT) is developed. The element has 4 nodes and 20 degrees of freedom. The transverse displacement is interpolated by using an optimized interpolation function while the additional rotation degrees of freedom are approximated by linear Lagrange interpolation. The consistent element mass matrix is used. A damped element is introduced to the finite element model. The proposed FEM is used to calculate eigenfrequencies and modal damping of composite plates with various boundary conditions and different thicknesses. The results show that the present FEM gives excellent results when compared to other methods and experiment results, and is efficient and reliable for both thick and thin plates. The proposed finite element model does not lock in the thin plate situation and does not contain any spurious vibration mode, and converges rapidly. It will provide a good basis for the inverse analysis of vibration of a structure.

1.
Armanios
E. A.
, and
Negan
H. M.
,
1983
, “
An Improved Rectangular Element for Plate Bending Analysis
,”
Computers and Structures
, Vol.
16
, pp.
677
686
.
2.
Ghost
A. K.
, and
Dey
S. S.
,
1994
, “
Free Vibration of Laminated Composite Plates—A Simple Finite Element Based on Higher Order Theory
,”
Computers and Structures
, Vol.
52
, pp.
397
404
.
3.
Hinton, E., and Owen, D. R. J., 1984, Finite Element Software for Plates and Shells, Pineridge Press Limited.
4.
Hinton
E.
, and
Bicanic
N.
,
1979
, “
A Comparison of Lagrangian and Serendipity Mindlin Plate Elements for Free Vibration Analysis
,”
Computers and Structures
, Vol.
10
, pp.
483
493
.
5.
Hua, H. X., 1993, “Identification of Plate Rigities of Anisotropic Rectangular Plates, Sandwich Planets and Circular Orthotropic Disks Using Vibration Data,” Ph.D. thesis. Free University of Brussels, Belgium.
6.
Lin
D. X.
,
Ni
R. G.
, and
Adams
R. D.
,
1984
, “
Prediction and Measurement of the Vibrational Damping Parameters of Carbon and Glass Fibre-Reinforced Plastics Plates
,”
J. Composite Materials
, Vol.
18
, pp.
132
1521
.
7.
Malkus
D. S.
, and
Hughes
T. J. R.
,
1978
, “
Mixed Finite Element Methods—Reduced and Selective Integration Techniques: A Unification of Concepts
,”
Comput. Meth. Appl. Mech. Engng.
, Vol.
15
, pp.
63
81
.
8.
Mallikarjuna and Kant
T.
,
1989
, “
Free Vibration of Symmetrically Laminated Plates Using a Higher Order Theory With Finite Element Technique
,”
Int. J. Numer. Methods Engng.
, Vol.
28
, pp.
1875
1889
.
9.
Mottershead
J. E.
, and
Friswell
M. I.
,
1993
, “
Model Updating in Structural Dynamics: A Survey
,”
J. of Sound and Vib.
, Vol.
167
, pp.
347
375
.
10.
Noor
A. K.
, and
Burton
W. S.
,
1989
, “
Assessment of Shear Deformation Theories for Multilayered Composite Plates
,”
Appl. Mech. Rev.
, Vol.
42
, pp.
1
13
.
11.
Noor
A. K.
,
1973
, “
Free Vibration of Multi-layered Composite Plates
,”
AIAA J.
, Vol.
11
, pp.
1038
1039
.
12.
Panc, v., 1975, Theories of Elastic Plates, pp. 393–413, Noordhoff International Publishing.
13.
Phan
N. D.
, and
Reddy
J. N.
,
1985
, “
Analysis of Laminated Composite Plates Using a Higher-Order Shear Deformation Theory
,”
Int. J. for Numer. Meth. Engng.
, Vol.
21
, pp.
2201
2219
.
14.
Reddy
J. N.
, and
Robbins
D. H.
,
1994
Theories and Computational Models for Composite Laminates
,”
Appl. Mech. Rev.
, Vol.
47
, pp.
147
169
.
15.
Reddy
J. N.
,
1984
, “
A Simple Higher-Order Theory for Laminated Composite Plates
,”
ASME Journal of Applied Mechanics
, Vol.
54
, pp.
745
752
.
16.
Senthilnathan
N. R.
,
Lim
S. P.
,
Lee
K. H.
, and
Chow
S. T.
,
1988
, “
Vibration of Laminated Orthotropic Plates Using a Simplified Higher Order Deformation Theory
,”
Composite Structures
, Vol.
10
, pp.
211
229
.
17.
Sivakumaran
K. S.
,
1988
, “
Frequency Analysis of Symmetrically Laminated Plates With Free Edges
,”
J. Sound Vib.
, Vol.
125
, pp.
211
225
.
18.
Sol, H., 1986, “Identification of Anisotropic Plate Rigidities Using Free Vibration Data,” Ph.D. Thesis, Free University of Brussels, Belgium.
19.
Wiberg
N. E.
,
Bausys
R.
, and
Zeng
L. F.
,
1994
, “
Free Vibration Analysis of Reissner-Mindlin Plate Using a Linked Interpolated Mixed Element
,”
Computer and Structures
, Vol.
52
, pp.
979
986
.
20.
Wu
C. P.
, and
Chen
W. Y.
,
1994
, “
Vibration and Stability of Laminated Plates Based on a Local Higher-Order Plate Theory
,”
J. Sound Vib.
, Vol.
177
, pp.
503
520
.
21.
Zienkiewicz
O. C.
,
Xu
Z.
,
Zeng
L. F.
,
Samuelsson
A.
, and
Wiberg
N. E.
,
1993
, “
Linked Interpolation for Ressner-Mindlin Plate Elements, Part 1—A Simple Quadrilateral
,”
Int. J. Numer. Method Engng.
, Vol.
36
, pp.
3043
3056
.
22.
Zienkiewicz
O. C.
,
Too
J.
, and
Taylor
R. L.
,
1970
, “
Reduced Integration Technique in General Analysis of Plates and Shells
,”
Int. J. Numer. Method Engng.
, Vol.
2
, pp.
419
451
.
This content is only available via PDF.
You do not currently have access to this content.