Abstract

In the second part of this three-paper series, high-fidelity simulations of the transonic cascade TEAMAero at the aerodynamic design point with Rein=1.35×106 and Main=1.21 are presented. A high-order discontinuous Galerkin spectral element method with finite-volume subcell shock capturing is employed to simulate the flow based on an implicit large eddy simulation (LES) scheme and advanced over several buffeting cycles to reliably capture the shock unsteadiness. A study on the spanwise domain size shows that the shock oscillation amplitude decreases with increasing span, although its frequency and mean location remain fixed through the simulations. By comparing high- and low-resolution LES results, it is further presented that deviations from under-resolution are mostly limited to the separated region past the shock, where the high-fidelity results match experimental results more closely. In addition to the LES, low-fidelity unsteady Reynolds-averaged Navier–Stokes is shown to capture the shock unsteadiness correctly, but at a reduced amplitude and fails to match the force distributions on the blade surface. Through examination of instantaneous flow features, space–time relations and spectral proper orthogonal decomposition, a basic analysis of the shock–boundary layer interaction is presented and indicates that velocity perturbations travel upstream through the subsonic boundary layer and periodically cause oblique shock waves, transporting the information from the boundary layer into the passage.

References

1.
Epstein
,
A. H.
,
Kerrebrock
,
J. L.
, and
Thompkins
,
W. T.
,
1979
, “
Shock Structure in Transonic Compressor Rotors
,”
AIAA J.
,
17
(
4
), pp.
375
379
.
2.
Hah
,
C.
, and
Reid
,
L.
,
1992
, “
A Viscous Flow Study of Shock-Boundary Layer Interaction, Radial Transport, and Wake Development in a Transonic Compressor
,”
ASME J. Turbomach.
,
114
(
3
), pp.
538
547
.
3.
Vieira
,
R.
, and
Azevedo
,
J. L.
,
2013
, “RANS Simulations of Flows With Shock Wave-Boundary Layer Interaction, 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, American Institute of Aeronautics and Astronautics.
4.
Hergt
,
A.
,
Klinner
,
J.
,
Wellner
,
J.
,
Willert
,
C.
,
Grund
,
S.
,
Steinert
,
W.
, and
Beversdorff
,
M.
,
2019
, “
The Present Challenge of Transonic Compressor Blade Design
,”
ASME J. Turbomach.
,
141
(
9
), p.
091004
.
5.
Sandberg
,
R. D.
, and
Michelassi
,
V.
,
2019
, “
The Current State of High-Fidelity Simulations for Main Gas Path Turbomachinery Components and Their Industrial Impact
,”
Flow Turbul. Combust.
,
102
(
4
), pp.
797
848
.
6.
Clemens
,
N. T.
, and
Narayanaswamy
,
V.
,
2014
, “
Low-Frequency Unsteadiness of Shock Wave/Turbulent Boundary Layer Interactions
,”
Annu. Rev. Fluid. Mech.
,
46
(
1
), pp.
469
492
.
7.
Lee
,
B. H. K.
,
1990
, “
Oscillatory Shock Motion Caused by Transonic Shock Boundary-Layer Interaction
,”
AIAA J.
,
28
(
5
), pp.
942
944
.
8.
Lee
,
B.
,
2001
, “
Self-Sustained Shock Oscillations on Airfoils At Transonic Speeds
,”
Prog. Aerosp. Sci.
,
37
(
2
), pp.
147
196
.
9.
Hartmann
,
A.
,
Feldhusen
,
A.
, and
Schröder
,
W.
,
2013
, “
On the Interaction of Shock Waves and Sound Waves in Transonic Buffet Flow
,”
Phys. Fluids.
,
25
(
2
), p.
026101
.
10.
Crouch
,
J. D.
,
Garbaruk
,
A.
,
Magidov
,
D.
, and
Travin
,
A.
,
2009
, “
Origin of Transonic Buffet on Aerofoils
,”
J. Fluid Mech.
,
628
, pp.
357
369
.
11.
Garnier
,
E.
, and
Deck
,
S.
,
2010
, “Large-Eddy Simulation of Transonic Buffet over a Supercritical Airfoil,”
Notes on Numerical Fluid Mechanics and Multidisciplinary Design
, Vol.
110
,
M.
Deville
,
TH
, and
P.
Sagaut
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
135
141
.
12.
Dussauge
,
J.-P.
, and
Piponniau
,
S.
,
2008
, “
Shock/Boundary-Layer Interactions: Possible Sources of Unsteadiness
,”
J. Fluids Struct.
,
24
(
8
), pp.
1166
1175
.
13.
Touber
,
E.
, and
Sandham
,
N. D.
,
2009
, “
Large-Eddy Simulation of Low-Frequency Unsteadiness in a Turbulent Shock-Induced Separation Bubble
,”
Theor. Comput. Fluid Dyn.
,
23
(
2
), pp.
79
107
.
14.
Bode
,
C.
,
Przytarski
,
P. J.
,
Leggett
,
J.
, and
Sandberg
,
R. D.
,
2022
, “
Highly Resolved Large-Eddy Simulations of a Transonic Compressor Stage Midspan Section Part I: Effect of Inflow Disturbances
,”
Proceedings of the ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. Volume 10D: Turbomachinery — Multidisciplinary Design Approaches, Optimization, and Uncertainty Quantification; Turbomachinery General Interest; Unsteady Flows in Turbomachinery
,
Rotterdam, Netherlands
,
June 13–17
.
15.
Priebe
,
S.
,
Wilkin
,
D.
,
Breeze-Stringfellow
,
A.
,
Mousavi
,
A.
, and
Bhaskaran
,
R.
,
2022
, “
Large Eddy Simulations of a Transonic Airfoil Cascade
,”
Proceedings of the ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. Volume 10A: Turbomachinery — Axial Flow Fan and Compressor Aerodynamics
,
Rotterdam, Netherlands
,
June 13–17
.
16.
Klose
,
B. F.
,
Morsbach
,
C.
,
Bergmann
,
M.
,
Hergt
,
A.
,
Klinner
,
J.
,
Grund
,
S.
, and
Kügeler
,
E.
,
2024
, “
A Numerical Test Rig for Turbomachinery Flows Based on Large Eddy Simulations With a High-Order Discontinuous Galerkin Scheme–Part II: Shock Capturing and Transonic Flows
,”
ASME J. Turbomach.
,
146
(
2
), p.
021006
.
17.
Klose
,
B. F.
,
Munoz Lopez
,
E. J.
,
Hergt
,
A.
,
Klinner
,
J.
,
Bergmann
,
M.
, and
Morsbach
,
C.
,
2023
,
Analysis of a Transonic Cascade With Wall-Modeled LES Based on DGSEM
,
Springer Nature Switzerland
,
Cham
, pp.
157
163
.
18.
Wang
,
Z.
,
Fidkowski
,
K.
,
Abgrall
,
R.
,
Bassi
,
F.
,
Caraeni
,
D.
,
Cary
,
A.
,
Deconinck
,
H.
, et al.,
2013
, “
High-Order CFD Methods: Current Status and Perspective
,”
Inter. J. Num. Methods Fluids
,
72
(
8
), pp.
811
845
.
19.
Kronbichler
,
M.
, and
Persson
,
P.-O.
,
2021
,
Efficient High-Order Discretizations for Computational Fluid Dynamics
,
Springer International Publishing
,
Cham
.
20.
Hindenlang
,
F. J.
,
Gassner
,
G. J.
, and
Munz
,
C. -D.
,
2014
, “
Improving the Accuracy of Discontinuous Galerkin Schemes at Boundary Layers
,”
Inter. J. Num. Methods Fluids
,
75
(
6
), pp.
385
402
.
21.
Gassner
,
G. J.
,
Winters
,
A. R.
, and
Kopriva
,
D. A.
,
2016
, “
Split Form Nodal Discontinuous Galerkin Schemes With Summation-By-Parts Property for the Compressible Euler Equations
,”
J. Comput. Phys.
,
327
, pp.
39
66
.
22.
Winters
,
A. R.
,
Moura
,
R. C.
,
Mengaldo
,
G.
,
Gassner
,
G. J.
,
Walch
,
S.
,
Peiro
,
J.
, and
Sherwin
,
S. J.
,
2018
, “
A Comparative Study on Polynomial Dealiasing and Split Form Discontinuous Galerkin Schemes for Under-Resolved Turbulence Computations
,”
J. Comput. Phys.
,
372
, pp.
1
21
.
23.
Garai
,
A.
,
Diosady
,
L.
,
Murman
,
S.
, and
Madavan
,
N.
,
2015
, “
DNS of Flow in a Low-Pressure Turbine Cascade Using a Discontinuous-Galerkin Spectral-Element Method
,”
Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. Volume 2B: Turbomachinery
,
Montreal, Quebec, Canada
,
June 15–19
.
24.
Bergmann
,
M.
,
Morsbach
,
C.
,
Klose
,
B. F.
,
Ashcroft
,
G.
, and
Kügeler
,
E.
,
2024
, “
A Numerical Test Rig for Turbomachinery Flows Based on Large Eddy Simulations With a High-Order Discontinuous Galerkin Scheme–Part I: Sliding Interfaces and Unsteady Row Interactions
,”
ASME J. Turbomach.
,
146
(
2
), p.
021005
.
25.
Morsbach
,
C.
,
Bergmann
,
M.
,
Tosun
,
A.
,
Klose
,
B. F.
,
Bechlars
,
P.
, and
Kügeler
,
E.
,
2024
, “
A Numerical Test Rig for Turbomachinery Flows Based on Large Eddy Simulations With a High-Order Discontinuous Galerkin Scheme–Part III: Secondary Flow Effects
,”
ASME J. Turbomach.
,
146
(
2
), p.
021007
.
26.
TEAMAero
,
2021
, Towards Effective Flow Control and Mitigation of Shock Effects in Aeronautical Applications. https://h2020-teamaero.eu
27.
Munoz Lopez
,
E. J.
,
Hergt
,
A.
,
Klinner
,
J.
,
Grund
,
S.
,
Karboujian
,
J.
,
Flamm
,
J.
, and
Gümmer
,
V.
,
2023
, “
Investigations of the Unsteady Shock-Boundary Layer Interaction in a Transonic Compressor Cascade
,”
Proceedings of the ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition. Volume 13D: Turbomachinery — Multidisciplinary Design Approaches, Optimization, and Uncertainty Quantification; Radial Turbomachinery Aerodynamics; Unsteady Flows in Turbomachinery
,
Boston, MA
,
June 26–30
.
28.
Klinner
,
J.
,
Munoz Lopez
,
E. J.
,
Hergt
,
A.
, and
Willert
,
C.
,
2023
, “High-Resolution PIV Measurements of the Shock Boundary Layer Interaction Within a Highly Loaded Transonic Compressor Cascade, 15th International Symposium on Particle Image Velocimetry, ISPIV 2023. https://elib.dlr.de/197278/
29.
Morsbach
,
C.
,
2016
, “
Reynolds Stress Modelling for Turbomachinery Flow Applications
,” Ph.D. thesis, Technischen Universität Darmstadt.
30.
Geiser
,
G.
,
Wellner
,
J.
,
Kügeler
,
E.
,
Weber
,
A.
, and
Moors
,
A.
,
2019
, “
On the Simulation and Spectral Analysis of Unsteady Turbulence and Transition Effects in a Multistage Low Pressure Turbine
,”
ASME J. Turbomach.
,
141
(
5
), p.
051012
.
31.
Menter
,
F.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “Ten Years of Industrial Experience With the SST Model, Turbulence, Heat and Mass Transfer 4, K. Hanjalić, Y. Nagano, and M. Tummers, eds.
32.
Kato
,
M.
, and
Launder
,
B. E.
,
1993
, “
The Modeling of Turbulent Flow Around Stationary and Vibrating Square Cylinders
,”
9th Symposium on Turbulent Shear Flows
,
Kyoto, Japan
,
Aug. 16–18
, pp. 10.4.1–10.4.6..
33.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
2894
2906
.
34.
Venkatakrishnan
,
V.
,
1993
, “
On the Accuracy of Limiters and Convergence to Steady State Solutions
,”
31st Aerospace Sciences Meeting
,
Reno, NV
,
Jan. 11–14
.
35.
Roe
,
P.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
43
(
2
), pp.
357
372
.
36.
Bergmann
,
M.
,
Gölden
,
R.
, and
Morsbach
,
C.
,
2018
, “Numerical Investigation of Split Form Nodal Discontinuous Galerkin Schemes for the Implicit LES of a Turbulent Channel Flow,” Proceedings of the 7th European Conference on Computational Fluid Dynamics.
37.
Bergmann
,
M.
,
Morsbach
,
C.
, and
Ashcroft
,
G.
,
2020
, “
Assessment of Split Form Nodal Discontinuous Galerkin Schemes for the LES of a Low Pressure Turbine Profile
,” ERCOFTAC Series,
Springer International Publishing
, pp.
365
371
.
38.
Kopriva
,
D. A.
,
2009
,
Implementing Spectral Methods for Partial Differential Equations
,
Springer Netherlands
,
Dordrecht
.
39.
Chandrashekar
,
P.
,
2013
, “
Kinetic Energy Preserving and Entropy Stable Finite Volume Schemes for Compressible Euler and Navier-Stokes Equations
,”
Commun. Comput. Phys.
,
14
(
5
), pp.
1252
1286
.
40.
Bassi
,
F.
, and
Rebay
,
S.
,
1997
, “
A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier–Stokes Equations
,”
J. Comput. Phys.
,
131
(
2
), pp.
267
279
.
41.
Hennemann
,
S.
,
Rueda-Ramírez
,
A. M.
,
Hindenlang
,
F. J.
, and
Gassner
,
G. J.
,
2021
, “
A Provably Entropy Stable Subcell Shock Capturing Approach for High Order Split Form DG for the Compressible Euler Equations
,”
J. Comput. Phys.
,
426
, p.
109935
.
42.
Fernandez
,
P.
,
Nguyen
,
N.-C.
, and
Peraire
,
J.
,
2018
, A Physics-Based Shock Capturing Method for Large-Eddy Simulation.
43.
Rueda-Ramırez
,
A. M.
,
Pazner
,
W.
, and
Gassner
,
G. J.
,
2022
, “
Subcell Limiting Strategies for Discontinuous Galerkin Spectral Element Methods
,”
Comput. Fluids
,
247
, p.
105627
.
44.
Shu
,
C.-W.
, and
Osher
,
S.
,
1988
, “
Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes
,”
J. Comput. Phys.
,
77
(
2
), pp.
439
471
.
45.
Munoz Lopez
,
E. J.
,
Hergt
,
A.
,
Ockenfels
,
T.
,
Grund
,
S.
, and
Gümmer
,
V.
,
2023
, “
The Current Gap Between Design Optimization and Experiments for Transonic Compressor Blades
,”
Int. J. Turbomach. Propul. Power
,
8
(
4
), p.
47
.
46.
Schlüß
,
D.
,
Frey
,
C.
, and
Ashcroft
,
G.
,
2016
, “Consistent Non-Reflecting Boundary Conditions For Both Steady And Unsteady Flow Simulations in Turbomachinery Applications,” ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering, Crete Island, Greece.
47.
Geuzaine
,
C.
, and
Remacle
,
J.-F.
,
2009
, “
Gmsh: A 3-D Finite Element Mesh Generator With Built-in Pre- and Post-Processing Facilities
,”
Inter. J. Num. Methods Eng.
,
79
(
11
), pp.
1309
1331
.
48.
Karypis
,
G.
, and
Kumar
,
V.
,
1998
, “
A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs
,”
SIAM J. Sci. Comput.
,
20
(
1
), pp.
359
392
.
49.
Bergmann
,
M.
,
Morsbach
,
C.
,
Ashcroft
,
G.
, and
Kügeler
,
E.
,
2022
, “
Statistical Error Estimation Methods for Engineering-Relevant Quantities From Scale-Resolving Simulations
,”
ASME J. Turbomach.
,
144
(
3
), p.
031005
.
50.
Schmidt
,
O. T.
, and
Colonius
,
T.
,
2020
, “
Guide to Spectral Proper Orthogonal Decomposition
,”
AIAA J.
,
58
(
3
), pp.
1023
1033
.
51.
Morsbach
,
C.
,
Klose
,
B. F.
,
Bergmann
,
M.
, and
Müller
,
F. M.
,
2024
, Modal Analysis of High-Fidelity Simulations in Turbomachinery.
You do not currently have access to this content.