Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Flows in compressors are extremely complex with various scales. Small-scale turbulence, middle-scale rotor–stator interaction (RSI), large-scale corner separation, and tip leakage flow should all be considered in the simulation of compressors. Recently, a new hybrid Reynolds-averaged Navier–Stokes-large eddy simulation (RANS-LES) strategy that modifies the turbulent viscosity equation based on the Kolmogorov energy spectrum, termed the grid-adaptive simulation (GAS) method, is proposed by our group to achieve high accuracy simulation using different grid resolutions. In this study, the GAS method with the shear stress transport (SST) turbulence model is employed to simulate the RSI just with RANS-like grid resolution in a single-stage transonic compressor TUDa-GLR open test case. Compared with experiments and other simulation methods (including RANS and delayed detached eddy simulation (DDES) methods), results show that the GAS method can significantly improve the prediction accuracy for stall margin and radial distribution of flow parameters. Then, the effect of RSI on the secondary flow structures is analyzed based on the unsteady flow field simulated by the GAS method. Results show that the incorrect prediction of rotor tip leakage vortex breakdown and the underestimation of mixing losses in the tip region of the rotor are blamed for the high prediction deviation of RANS. An intuitive total pressure fluctuation caused by wakes is observed in the stator inlet. The particle tracking shows that the wake from the suction surface of the rotor has a strong trend to transport into the tip region of the stator. Spectral proper orthogonal decomposition (SPOD) is also utilized. Unsteady temporal–spatial structures induced by local unsteadiness and RSI are distinguished by SPOD, which includes the reverse flow in the tip region of the rotor and the pressure wave generated from RSI. SPOD also found that the separation of the stator on the suction side exhibits an unsteady fluctuation with a frequency of 1.6 blade passing frequency (BPF).

References

1.
Greitzer
,
E. M.
,
Tan
,
C. S.
,
Wisler
,
D. C.
,
Adamczyk
,
J. J.
, and
Strazisar
,
A.
,
1994
, “
Unsteady Flow in Turbomachines: Where’s the Beef?
Unsteady Flows Aero Propuls.
,
40
, pp.
1
11
.
2.
Adamczyk
,
J. J.
,
1999
, “
Aerodynamic Analysis of Multistage Turbomachinery Flows in Support of Aerodynamic Design
,”
ASME J. Turbomach.
,
122
(
2
), pp.
189
217
.
3.
Smith
,
L. H.
, Jr.
,
1966
, “
Wake Dispersion in Turbomachines
,”
ASME J. Basic Eng.
,
88
(
3
), pp.
688
690
.
4.
Adkins
,
G. G.
, Jr.
, and
Smith
,
L. H.
, Jr.
,
1982
, “
Spanwise Mixing in Axial-Flow Turbomachines
,”
J. Eng. Power
,
104
(
1
), pp.
97
110
.
5.
Praisner
,
T. J.
,
Clark
,
J. P.
,
Nash
,
T. C.
,
Rice
,
M. J.
, and
Grover
,
E. A.
,
2006
, “
Performance Impacts Due to Wake Mixing in Axial-Flow Turbomachinery
,” ASME Paper No. 2006-GT-90666.
6.
Nolan
,
S. P. R.
,
Botros
,
B. B.
,
Tan
,
C. S.
,
Adamczyk
,
J. J.
,
Greitzer
,
E. M.
, and
Gorrell
,
S. E.
,
2010
, “
Effects of Upstream Wake Phasing on Transonic Axial Compressor Performance
,”
ASME J. Turbomach.
,
133
(
2
), p.
021010
.
7.
Van de Wall
,
A. G.
,
Kadambi
,
J. R.
, and
Adamczyk
,
J. J.
,
2000
, “
A Transport Model for the Deterministic Stresses Associated With Turbomachinery Blade Row Interactions
,”
ASME J. Turbomach.
,
122
(
4
), pp.
593
603
.
8.
Liu
,
Y.
,
Tang
,
Y.
,
Liu
,
B.
, and
Lu
,
L.
,
2019
, “
An Exponential Decay Model for the Deterministic Correlations in Axial Compressors
,”
ASME J. Turbomach.
,
141
(
2
), p.
021005
.
9.
Liu
,
Y.
,
Wei
,
X.
, and
Tang
,
Y.
,
2023
, “
Investigation of Unsteady Rotor–Stator Interaction and Deterministic Correlation Analysis in a Transonic Compressor Stage
,”
ASME J. Turbomach.
,
145
(
7
), p.
071004
.
10.
Zhong
,
W.
,
Liu
,
Y.
, and
Tang
,
Y.
,
2024
, “
Unsteady Flow Structure of Corner Separation in a Highly Loaded Compressor Cascade
,”
ASME J. Turbomach.
,
146
(
3
), p.
031003
.
11.
Sandberg
,
R. D.
, and
Michelassi
,
V.
,
2022
, “
Fluid Dynamics of Axial Turbomachinery: Blade- and Stage-Level Simulations and Models
,”
Annu. Rev. Fluid Mech.
,
54
(
1
), pp.
255
285
.
12.
Sandberg
,
R. D.
,
Michelassi
,
V.
,
Pichler
,
R.
,
Chen
,
L.
, and
Johnstone
,
R.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part I: Methodology
,”
ASME J. Turbomach.
,
137
(
5
), p.
051011
.
13.
Michelassi
,
V.
,
Chen
,
L. W.
,
Pichler
,
R.
, and
Sandberg
,
R. D.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part II: Effect of Inflow Disturbances
,”
ASME J. Turbomach.
,
137
(
7
), p.
071005
.
14.
Pichler
,
R.
,
Sandberg
,
R. D.
,
Michelassi
,
V.
, and
Bhaskaran
,
R.
,
2016
, “
Investigation of the Accuracy of RANS Models to Predict the Flow Through a Low-Pressure Turbine
,”
ASME J. Turbomach.
,
138
(
12
), p.
121009
.
15.
Przytarski
,
P. J.
, and
Wheeler
,
A. P. S.
,
2020
, “
The Effect of Gapping on Compressor Performance
,”
ASME J. Turbomach.
,
142
(
12
), p.
121006
.
16.
Przytarski
,
P. J.
, and
Wheeler
,
A. P. S.
,
2021
, “
Accurate Prediction of Loss Using High Fidelity Methods
,”
ASME J. Turbomach.
,
143
(
3
), p.
031008
.
17.
Hodson
,
H. P.
, and
Howell
,
R. J.
,
2005
, “
Blade Row Interactions, Transition, and High-Lift Aerofoils in Low-Pressure Turbines
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
71
98
.
18.
Liu
,
Y.
,
Wang
,
F.
,
Zhao
,
S.
, and
Tang
,
Y.
,
2024
, “
A Novel Framework for Predicting Active Flow Control by Combining Deep Reinforcement Learning and Masked Deep Neural Network
,”
Phys. Fluids
,
36
(
3
), p.
037112
.
19.
Liu
,
Y.
,
Zhao
,
S.
,
Wang
,
F.
, and
Tang
,
Y.
,
2024
, “
A Novel Method for Predicting Fluid–Structure Interaction With Large Deformation Based on Masked Deep Neural Network
,”
Phys. Fluids
,
36
(
2
), p.
027103
.
20.
Wang
,
D. X.
,
2014
, “
An Improved Mixing-Plane Method for Analyzing Steady Flow Through Multiple-Blade-Row Turbomachines
,”
ASME J. Turbomach.
,
136
(
8
), p.
081003
.
21.
Rai
,
M. M.
,
1989
, “
Three-Dimensional Navier-Stokes Simulations of Turbine Rotor–Stator Interaction. Part I—Methodology
,”
J. Propuls. Power
,
5
(
3
), pp.
305
311
.
22.
He
,
L.
,
2010
, “
Fourier Methods for Turbomachinery Applications
,”
Prog. Aerosp. Sci.
,
46
(
8
), pp.
329
341
.
23.
Liu
,
Y.
,
Lu
,
L. P.
,
Fang
,
L.
, and
Gao
,
F.
,
2011
, “
Modification of Spalart-Allmaras Model With Consideration of Turbulence Energy Backscatter Using Velocity Helicity
,”
Phys. Lett. A
,
375
(
24
), pp.
2377
2381
.
24.
Liu
,
Y.
,
Yu
,
X.
, and
Liu
,
B.
,
2008
, “
Turbulence Models Assessment for Large-Scale Tip Vortices in an Axial Compressor Rotor
,”
J. Propuls. Power
,
24
(
1
), pp.
15
25
.
25.
Yan
,
H.
,
Liu
,
Y.
, and
Lu
,
L.
,
2019
, “
Turbulence Anisotropy Analysis in a Highly Loaded Linear Compressor Cascade
,”
Aerosp. Sci. Technol.
,
91
, pp.
241
254
.
26.
Liu
,
Y.
,
Luo
,
P.
, and
Tang
,
Y.
,
2024
, “
Improved Prediction of Turbomachinery Flows Using Reynolds Stress Model With γ Transition Model
,”
Aerosp. Sci. Technol.
,
144
, p.
108812
.
27.
Li
,
W.
, and
Liu
,
Y.
,
2023
, “
Study of Limits to the Rotation Function in the SA-RC Turbulence Model
,”
Chin. J. Aeronaut.
,
36
(
1
), pp.
246
265
.
28.
Li
,
W.
, and
Liu
,
Y.
,
2022
, “
Numerical Investigation of Corner Separation Flow Using Spalart-Allmaras Model With Various Modifications
,”
Aerosp. Sci. Technol.
,
127
, p.
107682
.
29.
He
,
X.
,
Zhao
,
F.
, and
Vahdati
,
M.
,
2022
, “
Detached Eddy Simulation: Recent Development and Application to Compressor Tip Leakage Flow
,”
ASME J. Turbomach.
,
144
(
1
), p.
011009
.
30.
He
,
L.
,
2021
, “
Averaging for High Fidelity Modeling—Toward Large Eddy Simulations in Multi-passage Multi-row Configurations
,”
ASME J. Turbomach.
,
143
(
2
), p.
021002
.
31.
Fard Afshar
,
N.
,
Möller
,
F. M.
,
Henninger
,
S.
,
Kožulović
,
D.
,
Morsbach
,
C.
,
Bechlars
,
P.
, and
Jeschke
,
P.
,
2024
, “
Assessment of the DDES-γ Model for the Simulation of a Highly Loaded Turbine Cascade
,”
ASME J. Turbomach.
,
146
(
1
), p.
011011
.
32.
Gao
,
Y.
, and
Liu
,
Y.
,
2020
, “
Modification of DDES Based on SST Model for Tip Leakage Flow in Turbomachinery
,” ASME Paper No. GT2020-14851.
33.
Spalart
,
P. R.
,
1997
, “
Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach
,”
Proceedings of First AFOSR International Conference on DNS/LES
,
Louisiana Tech University, Ruston, LA
,
Aug. 4–8
, Greyden Press, pp.
137
148
.
34.
Spalart
,
P. R.
,
Deck
,
S.
,
Shur
,
M. L.
,
Squires
,
K. D.
,
Strelets
,
M. K.
, and
Travin
,
A.
,
2006
, “
A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities
,”
Theor. Comput. Fluid Dyn.
,
20
(
3
), pp.
181
195
.
35.
Liu
,
Y.
,
Yan
,
H.
,
Lu
,
L.
, and
Li
,
Q.
,
2016
, “
Investigation of Vortical Structures and Turbulence Characteristics in Corner Separation in a Linear Compressor Cascade Using DDES
,”
ASME J. Fluids Eng.
,
139
(
2
), p.
021107
.
36.
Liu
,
Y.
,
Zhong
,
L.
, and
Lu
,
L.
,
2019
, “
Comparison of DDES and URANS for Unsteady Tip Leakage Flow in an Axial Compressor Rotor
,”
ASME J. Fluids Eng.
,
141
(
12
), p.
121405
.
37.
Yan
,
H.
,
Liu
,
Y.
,
Li
,
Q.
, and
Lu
,
L.
,
2018
, “
Turbulence Characteristics in Corner Separation in a Highly Loaded Linear Compressor Cascade
,”
Aerosp. Sci. Technol.
,
75
, pp.
139
154
.
38.
Nikitin
,
N. V.
,
Nicoud
,
F.
,
Wasistho
,
B.
,
Squires
,
K. D.
, and
Spalart
,
P. R.
,
2000
, “
An Approach to Wall Modeling in Large-Eddy Simulations
,”
Phys. Fluids
,
12
(
7
), pp.
1629
1632
.
39.
Piomelli
,
U.
,
Balaras
,
E.
,
Pasinato
,
H.
,
Squires
,
K. D.
, and
Spalart
,
P. R.
,
2003
, “
The Inner–Outer Layer Interface in Large-Eddy Simulations With Wall-Layer Models
,”
Int. J. Heat Fluid Flow
,
24
(
4
), pp.
538
550
.
40.
Wang
,
G.
, and
Liu
,
Y.
,
2022
, “
A Grid-Adaptive Simulation Model for Turbulent Flow Predictions
,”
Phys. Fluids
,
34
(
7
), p.
075125
.
41.
Bakhtiari
,
F.
,
Wartzek
,
F.
,
Leichtfuss
,
S.
,
Schiffer
,
H.-P.
,
Goinis
,
G.
, and
Nicke
,
E.
,
2015
, “
Design and Optimization of a New Stator for the Transonic Compressor Rig at TU Darmstadt
,” DGLRK 2015-370225.
42.
Berdanier
,
R. A.
, and
Key
,
N. L.
,
2015
, “
The Effects of Tip Leakage Flow on the Performance of Multistage Compressors Used in Small Core Engine Applications
,”
ASME J. Eng. Gas Turbines Power
,
138
(
5
), p.
052605
.
43.
Eitenmüller
,
J.
,
Wilhelm
,
M.
,
Gresser
,
L.
,
Ostrowksi
,
T.
,
Leichtfuss
,
S.
,
Schiffer
,
H.-P.
,
Lyko
,
C.
, and
Naik
,
S.
, “
Highly Accurate Delta Efficiency Measurements at the Large Scale Turbine Rig
,” ASME Paper No. GT2019-90294.
44.
Brandstetter
,
C.
,
Jüngst
,
M.
, and
Schiffer
,
H.-P.
,
2018
, “
Measurements of Radial Vortices, Spill Forward, and Vortex Breakdown in a Transonic Compressor
,”
ASME J. Turbomach.
,
140
(
6
), p.
061004
.
45.
Klausmann
,
F.
,
Franke
,
D.
,
Foret
,
J.
, and
Schiffer
,
H.-P.
,
2022
, “
Transonic Compressor Darmstadt—Open Test Case Introduction of the TUDa Open Test Case
,”
J. Global Power Propuls. Soc.
,
6
, pp.
318
329
.
46.
He
,
X.
,
Zhu
,
M.
,
Xia
,
K.
,
Fabian
,
K. S.
,
Teng
,
J.
, and
Vahdati
,
M.
,
2023
, “
Validation and Verification of RANS Solvers for TUDa-GLR-OpenStage Transonic Axial Compressor
,”
J. Global Power Propuls. Soc.
,
7
, pp.
13
29
.
47.
Deng
,
H.
,
He
,
X.
,
Zhu
,
M.
,
Klausmann
,
F.
, and
Teng
,
J.
,
2023
, “
Unsteady Flow Phenomenon in the TUDa-GLR-OpenStage Compressor: URANS Observations
,”
GPPS Conference Hong Kong
, GPPS-TC-2023-002.
48.
Shao
,
R.
,
He
,
X.
,
Zhu
,
M.
,
Klausmann
,
F.
, and
Teng
,
J.
,
2023
, “
Characterizing Shrouded Stator Cavity Flow on the Performance of a Single-Stage Axial Transonic Compressor
,”
ASME J. Turbomach.
,
145
(
11
), p.
111004
.
49.
Liu
,
Y.
, and
Tang
,
Y.
,
2019
, “
An Elliptical Region Method for Identifying a Vortex With Indications of Its Compressibility and Swirling Pattern
,”
Aerosp. Sci. Technol.
,
95
, p.
105448
.
50.
Xie
,
N.
,
Tang
,
Y.
, and
Liu
,
Y.
,
2023
, “
High-Fidelity Numerical Simulation of Unsteady Cavitating Flow Around a Hydrofoil
,”
J. Hydrodyn.
,
35
(
1
), pp.
1
16
.
51.
Hou
,
J.
,
Liu
,
Y.
,
Zhong
,
L.
,
Zhong
,
W.
, and
Tang
,
Y.
,
2022
, “
Effect of Vorticity Transport on Flow Structure in the Tip Region of Axial Compressors
,”
Phys. Fluids
,
34
(
5
), p.
055102
.
52.
Hou
,
J.
, and
Liu
,
Y.
,
2023
, “
Evolution of Unsteady Vortex Structures in the Tip Region of an Axial Compressor Rotor
,”
Phys. Fluids
,
35
(
4
), p.
045107
.
53.
Valkov
,
T. V.
, and
Tan
,
C. S.
,
1999
, “
Effect of Upstream Rotor Vortical Disturbances on the Time-Averaged Performance of Axial Compressor Stators: Part 1—Framework of Technical Approach and Wake–Stator Blade Interactions
,”
ASME J. Turbomach.
,
121
(
3
), pp.
377
386
.
54.
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Graf
,
M. B.
,
2004
,
Internal Flow: Concepts and Applications
,
Cambridge University Press
,
Cambridge
,
Chapter 6
.
55.
Lumley
,
J. L.
,
1967
, “The Structure of Inhomogeneous Turbulent Flows,”
Atmospheric Turbulence and Radio Wave Propagation
,
A. M.
Yaglom
and
V. I.
Tatarsky
, eds.,
Nauka
,
Moscow
, pp.
166
178
.
56.
Nekkanti
,
A.
, and
Schmidt
,
O. T.
,
2021
, “
Frequency–Time Analysis, Low-Rank Reconstruction and Denoising of Turbulent Flows Using SPOD
,”
J. Fluid Mech.
,
926
, p.
A26
.
57.
He
,
X.
,
Zhao
,
F.
,
Rigas
,
G.
, and
Vahdati
,
M.
,
2021
, “
Spectral Proper Orthogonal Decomposition of Compressor Tip Leakage Flow
,”
Phys. Fluids
,
33
(
10
), p.
105105
.
58.
Towne
,
A.
,
Schmidt
,
O. T.
, and
Colonius
,
T.
,
2018
, “
Spectral Proper Orthogonal Decomposition and Its Relationship to Dynamic Mode Decomposition and Resolvent Analysis
,”
J. Fluid Mech.
,
847
, pp.
821
867
.
You do not currently have access to this content.