Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

In this study, surface temperature maps resulting from a long-term engine test were evaluated on a stage 1 turbine vane using thermal history coatings (THCs). THCs are ceramic-type sensor coatings doped with a lanthanide ion, giving the coating photoluminescent properties. The THC's structure permanently changes when exposed to high temperatures, which in turn alters its photoluminescent properties. Therefore, historic maximum temperature maps are evaluated by optically probing the THC point-by-point across the vane's surface. The vane was exposed to a non-dedicated (multi-cycle, multi temperature-level) engine test lasting over 8 months. Two passes of THC measurements were taken, termed low resolution (LR) and high resolution (HR), each, respectively, with point pitches of 5 mm and 1 mm. The latter provided a unique insight into the historic maximum temperature profile of the vane, particularly around high-temperature gradient regions, such as those close to effusion cooling holes. The THC temperatures were compared to the engine manufacturer's (Doosan Enerbility) heat transfer code (Doosan Integrated Thermal Analysis for Cooling System (DiTACS)) for validation. The THC temperature mapping was successful with good coverage across the vane. The leading edge and pressure side trailing edge regions were typically the hottest. The HR measurements clearly show sharp thermal gradients around the effusion cooling holes on the vane's airfoil and platforms. Critically, the THC measurements were compared very well to the DiTACS measurements, validating THCs as a credible temperature measurement technique for long-term, non-dedicated engine tests for components operating in some of the most extreme environments of an engine.

References

1.
Boyce
,
M. P.
,
2012
, “Advanced Industrial Gas Turbines for Power Generation,”
Combined Cycle Systems for Near-Zero Emission Power Generation
,
A. D.
Rao
, ed.,
Woodhead Publishing
,
Cambridge, UK
, pp.
44
102
.
2.
IAEA
,
2011
, “IAEA Annual Report 2011.”
3.
Peschke
,
P.
,
Naik
,
S.
, and
Henze
,
M.
,
2022
, “
Design Considerations and Validation of a Near Wall Cooled Stator Heat Shield With Sequential Impingement Cooling
,”
Proceedings of the ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition
,
Rotterdam, Netherlands
,
June 13–17
,
p. V06BT15A026
.
4.
Shaddix
,
C. R.
,
1999
,
Correcting Thermocouple Measurements for Radiation Loss: A Critical Review
,
American Society of Mechanical Engineers
,
New York
.
5.
Bonham
,
C.
,
Thorpe
,
S. J.
,
Erlund
,
M. N.
, and
Stevenson
,
R. J.
,
2018
, “
Combination Probes for Stagnation Pressure and Temperature Measurements in Gas Turbine Engines
,”
Meas. Sci. Technol.
,
29
(
1
), pp.
1
23
.
6.
Kerr
,
C.
, and
Ivey
,
P.
,
2004
, “
Optical Pyrometry for Gas Turbine Aeroengines
,”
Sens. Rev.
,
24
(
4
), pp.
378
386
.
7.
Bird
,
C.
,
Mutton
,
J. E.
,
Shepherd
,
R.
,
Smith
,
M. D. W.
, and
Watson
,
H. M. L.
,
1997
, “
Surface Temperature Measurements in Turbines
,”
Advanced Non-Intrusive Instrumentation for Propulsion Engines, AGARD Propulsion and Energetics Panel 90th Symposium
,
Brussels, Belgium
,
Oct. 20–24
,
pp 21.4–21.10
.
8.
Volinsky
,
A. A.
, and
Ginzbursky
,
L.
,
2003
, “
Irradiated Cubic Single Crystal SiC as a High Temperature Sensor
,”
MRS Proc.
,
792
(
1
), pp.
51
56
.
9.
Peral
,
D.
,
Zaid
,
A.
,
Benninghoven
,
C.
,
Araguas-Rodríguez
,
S.
,
Kluß
,
D.
,
Karagiannopoulos
,
S.
,
Krewinkel
,
R.
, and
Feist
,
J. P.
,
2022
, “
High-Resolution Thermal Profiling of a Combustor in a Non-dedicated Test Using Thermal History Coatings
,”
ASME J. Turbomach.
,
144
(
11
), p.
111007
.
10.
Krewinkel
,
R.
,
Färber
,
J.
,
Orth
,
U.
,
Frank
,
D.
,
Lauer
,
M.
,
Pilgrim
,
C. C.
,
Yañez Gonzalez
,
A.
,
Feist
,
J. P.
,
Saggese
,
R.
,
Berthier
,
S.
, and
Araguas-Rodriguez
,
S.
,
2017
, “
Validation of Surface Temperature Measurements on a Combustor Liner Under Full-Load Conditions Using a Novel Thermal History Paint
,”
ASME. J. Eng. Gas Turbines Power
,
139
(
4
), p.
041508
.
11.
Karagiannopoulos
,
S.
,
Tomoki
,
T.
,
Peral
,
D.
,
Araguás Rodríguez
,
S.
,
Tanaka
,
R.
,
Hickey
,
J.
, and
Feist
,
J. P.
,
2024
, “
Validation Of Thermal History Coating Technology on Two Stage-One Turbine Blades
,”
ASME. J. Eng. Gas Turbines Power
,
146
(
11
), p.
111005
.
12.
Fuhrmann
,
N.
,
Brübach
,
J.
, and
Dreizler
,
A.
,
2013
, “
Phosphor Thermometry: A Comparison of the Luminescence Lifetime and the Intensity Ratio Approach
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3611
3618
.
13.
Feist
,
J. P.
,
Karmakar Biswas
,
S.
,
Pilgrim
,
C. C.
,
Sollazzo
,
P. Y.
, and
Berthier
,
S.
,
2015
, “
Off-Line Temperature Profiling Utilizing Phosphorescent Thermal History Paints and Coatings
,”
ASME J. Turbomach.
,
137
(
10
), p.
101003
.
14.
Feist
,
J. P.
,
Nicholls
,
J. R.
, and
Heyes
,
A. L.
,
2007
, “Determining Thermal History of Components,” Patent WO/2009/083,729.
15.
Peral
,
D.
,
Araguas-Rodriguez
,
S.
,
Karagiannopoulos
,
S.
,
Yañez-Gonzalez
,
A.
,
Feist
,
J. P.
,
Castillo
,
D.
,
Pilgrim
,
C. C.
, and
Skinner
,
S.
,
2019
, “
Reliable Temperature Measurement With Thermal History Paints: An Uncertainty Estimation Model
,”
Proceedings of the ASME Turbo Expo
,
Phoenix, AZ
,
June 17–21
,
p. V006T24A022
.
16.
Pilgrim
,
C. C.
,
Ehrhard
,
J.
,
Schinnerl
,
M.
,
Araguás-Rodríguez
,
S.
,
Peral
,
D.
,
Straka
,
M.
,
Genschmar
,
M.
,
Karagiannopoulos
,
S.
,
Gutierrez
,
S. P.
, and
Feist
,
J. P.
,
2022
, “
Thermal Profiling of Automotive Turbochargers in Durability Tests
,”
ASME. J. Eng. Gas Turbines Power
,
144
(
2
), p.
021009
.
17.
Allison
,
S. W.
, and
Gillies
,
G. T.
,
1998
, “
Remote Thermometry With Thermographic Phosphors: Instrumentation and Applications
,”
Rev. Sci. Instrum.
,
68
(
7
), pp.
2615
2650
.
18.
Brübach
,
J.
,
Pflitsch
,
C.
,
Dreizler
,
A.
, and
Atakan
,
B.
,
2013
, “
On Surface Temperature Measurements With Thermographic Phosphors: A Review
,”
Prog. Energy Combust. Sci.
,
39
(
1
), pp.
37
60
.
19.
Carter
,
R. L.
,
1997
,
Molecular Symmetry and Group Theory
,
Wiley
,
New York
.
20.
Kalusniak
,
S.
,
Castellano-Hernández
,
E.
,
Yalçinoğlu
,
H.
,
Tanaka
,
H.
, and
Kränkel
,
C.
,
2022
, “
Spectroscopic Properties of Tb3+ as an Ion for Visible Lasers
,”
Appl. Phys. B
,
128
(
2
), p.
33
.
21.
Steinkemper
,
H.
,
Fischer
,
S.
,
Hermle
,
M.
, and
Goldschmidt
,
J. C.
,
2013
, “
Stark Level Analysis of the Spectral Line Shape of Electronic Transitions in Rare Earth Ions Embedded in Host Crystals
,”
New J. Phys.
,
15
(
5
), p.
53033
.
22.
Feist
,
J. P.
, and
Heyes
,
A. L.
,
2000
, “
The Characterization of Y2O2S:Sm Powder as a Thermographic Phosphor for High Temperature Applications
,”
Meas. Sci. Technol.
,
11
(
7
), p.
942
.
23.
Goss
,
L. P.
,
Smith
,
A. A.
, and
Post
,
M. E.
,
1989
, “
Surface Thermometry by Laser-Induced Fluorescence
,”
Rev. Sci. Instrum.
,
60
(
12
), pp.
3702
3706
.
24.
Araguas Rodriguez
,
S.
,
Ferran-Marques
,
M.
,
Pilgrim
,
C. C.
,
Kamnis
,
S.
,
Feist
,
J. P.
, and
Nicholls
,
J. R.
,
2020
, “
Thermal History Coatings—Part I: Influence of Atmospheric Plasma Spray Parameters on Performance
,”
Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition
,
Virtual, Online
,
Sept. 21–25
,
p. V003T02A010
.
25.
Pilgrim
,
C. C.
,
Castillo
,
D.
,
Araguás-Rodríguez
,
S.
,
Karagiannopoulos
,
S.
,
Feist
,
J. P.
,
Redwood
,
A.
,
Zhang
,
Y.
,
Copeland
,
C.
,
Scobie
,
J.
, and
Sangan
,
C.
,
2020
, “
Thermal Profiling of Cooled Radial Turbine Wheel
,”
Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition
,
Virtual, Online
,
Sept. 21–25
,
p. V005T05A014
.
26.
Palmero
,
P.
,
Esnouf
,
C.
,
Montanaro
,
L.
, and
Fantozzi
,
G.
,
2005
, “
Influence of the Co-Precipitation Temperature on Phase Evolution in Yttrium-Aluminium Oxide Materials
,”
J. Eur. Ceram. Soc.
,
25
(
9
), pp.
1565
1573
.
You do not currently have access to this content.