Abstract

An experimental and numerical investigation of phantom cooling effects on cooled and uncooled rotating high pressure turbine blades in a full scale 1 + 1/2 stage turbine test is presented. Objectives set to capture, separate, and quantify the effects of upstream vane film-cooling and leakage flows on downstream rotor blade surface heat flux. Multiple series of 1 + 1/2 stage rotating high pressure turbine tests were carried out in the Air Force Research Laboratory, Turbine Research Facility, at Wright-Patterson Air Force Base, Ohio. A non-proprietary research turbine was instrumented with high frequency double-sided thin film heat flux gauges custom made at AFRL. High bandwidth, time-resolved surface heat flux is measured on multiple film-cooled and non-film-cooled HPT rotor blades downstream of both film-cooled and non-film-cooled vane sectors. Upstream wake passing and heat flux is characterized on both rotor pressure and suction side surfaces, along with quantifying rotor phantom cooling effects from non-uniform first-stage vane film cooling and leakage flows. Fast response heat flux measurements quantify how rotor phantom cooling impacts the blade pressure side greatest. Measurements show upstream vane film-cooling alone can account for 50% of the rotor blade cooling effect in some instances, and even outweigh the rotor blade film cooling effect far from the blade showerhead holes. Added unsteady aero numerical simulation demonstrates how variations in inlet total temperature and incidence angle also contribute to the circumferentially non-uniform rotor heat flux. Results from this investigation aid modeling and design efforts in optimizing film cooling performance in real high-pressure turbine flow fields. Understanding the behavior of such non-uniform circumferential rotor phantom cooling effects can be critical to optimizing the efficiency, fuel consumption, range, and durability of advanced turbomachines.

References

1.
Munk
,
M.
, and
Prim
,
R.
,
1947
, “
On the Multiplicity of Steady Gas Flows Having the Same Streamline Pattern
,”
Proc. Natl. Acad. Sci.
,
33
(
5
), pp.
137
141
.
2.
Shang
,
T.
, and
Epstein
,
A. H.
,
1997
, “
Analysis of Hot Streak Effects on Turbine Rotor Heat Load
,”
ASME J. Turbomach.
,
119
(
3
), pp.
544
553
.
3.
Takahashi
,
R. K.
,
Ni
,
R. H.
,
Sharma
,
O. P.
, and
Staubach
,
J. B.
,
1996
, “
Effects of Hot Streak Indexing in a 1-1/2 Stage Turbine
,”
32nd Joint Propulsion Conference and Exhibit
,
Lake Buena Vista, FL
,
AIAA Paper 96-2796
.
4.
Dorney
,
D. J.
, and
Gundy-Burlet
,
K.
,
2000
, “
Hot-Streak Clocking Effects in a 1-1/2 Stage Turbine
,”
AIAA J. Propul. Power
,
12
(
3
), pp.
619
620
.
5.
Clark
,
J. P.
,
Koch
,
P. J.
,
Ooten
,
M. K.
,
Johnson
,
J. J.
,
Dagg
,
J.
,
McQuilling
,
M. W.
,
Huber
,
F.
, and
Johnson
,
P. D.
,
2009
, “
Design of Turbine Components to Answer Research Questions in Unsteady Aerodynamics and Heat Transfer
,”
AFRL Report
.
No. AFRL-RZ-WPTR-2009-2180
.
6.
Ni
,
R. H.
,
Humber
,
W.
,
Fan
,
G.
,
Clark
,
J. P.
,
Anthony
,
R. J.
, and
Johnson
,
J. J.
,
2013
, “
Comparison of Predictions From Conjugate Heat Transfer Analysis of a Film-Cooled Turbine Vane to Experimental Data
,”
ASME Turbo Expo 2013
,
San Antonio, TX
,
ASME Paper No. GT2013-94716
.
7.
Clark
,
J. P.
,
Anthony
,
R. J.
,
Ooten
,
M. K.
,
Finnegan
,
J. M.
,
Johnson
,
P. D.
, and
Ni
,
R. H.
,
2018
, “
Effects of Vane Bowing and Asymmetry on Unsteadiness in a Transonic Turbine
,”
ASME J. Turbomach.
,
140
(
9
), pp.
101006
101006
. -9.
8.
Johnson
,
J. J.
,
Clark
,
J. P.
,
Anthony
,
R. J.
,
Ooten
,
M. K.
,
Ni
,
R. H.
, and
Humber
,
W. H.
,
2019
, “
3D Heat Transfer Assessment of Full-Scale Inlet Vanes with Surface-Optimized Film Cooling, Part 2: Conjugate CFD Simulations
,”
ASME Turbo Expo 2019
,
Phoenix, AZ
,
ASME Paper No. GT2019-91864
.
9.
Downs
,
J. P.
, and
Landis
,
K. K.
, “
Turbine Cooling Systems Design—Past, Present, and Future
,”
ASME Turbo Expo 2009
,
Orlando, FL
,
June 8-12, 2009
,
ASME Paper No. GT2009-59991
.
10.
Ni
,
R. H.
,
Humber
,
W.
,
Ni
,
M.
,
Capece
,
V. R.
,
Ooten
,
M. K.
, and
Clark
,
J. P.
,
2016
, “
Aerodynamic Damping Predictions for Oscillating Airfoils in Cascades Using Moving Meshes
,”
ASME Turbo Expo 2016
,
Seoul, South Korea
,
ASME Paper No. GT2016-57017
.
11.
Anthony
,
R. J.
, and
Haldeman
,
C. W.
,
2023
, “
Hot Section Thermal Imaging Technology Development: Lessons and Implications for Engine Focused Transient Measurement Techniques
,”
ASME Turbo Expo 2023
,
Boston, MA
,
ASME Paper GT2023-103186
.
12.
Anthony
,
R. J.
,
Vanasse
,
N.
, and
McLaren
,
S.
,
2024
, “
High Speed Rotating HPT Blade Thermal Imaging of a Full Scale Cooled 1+1/2 Stage Turbine in a Short Duration Transient Test Facility
,”
ASME Turbo Expo 2024
,
London, UK
,
ASME Paper No. GT2024-128430
.
13.
Anthony
,
R. J.
,
Clark
,
J. P.
,
Finnegan
,
J. M.
, and
Johnson
,
J. J.
,
2019
, “
3D Experimental and Computational Heat Transfer Assessment of Full-Scale Inlet Vanes with Surface-Optimized Film Cooling, Part 1: Experimental Results
,”
ASME Turbo Expo 2019
,
Phoenix, AZ
.
14.
Anthony
,
R. J.
,
Kennedy
,
S. W.
,
Clark
,
J. P.
,
Finnegan
,
J. M.
,
Johnson
,
P. D.
,
Hendershot
,
J.
, and
Downs
,
J.
,
2011
, “
Flexible Non-Intrusive Heat Flux Instrumentation on the AFRL Research Turbine
,”
ASME Turbo Expo 2011
,
Vancouver, British Columbia, Canada
,
ASME Paper No. GT2011-46853
.
15.
Schultz
,
D. L.
, and
Jones
,
T. V.
,
1973
, “
Heat Transfer Measurements in Short-Duration Hypersonic Facilities
,”
NATO AGARDograph
.
AGARD-AG-165
.
16.
Epstein
,
A.
,
Guenette
,
G. R.
, and
Norton
,
R. J. G.
,
1984
, “
The MIT Blowdown Turbine Facility
,”
ASME Turbo Expo 1984
,
Amsterdam, The Netherlands
,
ASME Paper No. 84-GT-116
.
17.
Oldfield
,
M. L. G.
,
2006
, “
Impulse Response Processing of Transient Heat Transfer Gauge Signals
,”
ASME J. Turbomach
,
130
(
2
).
18.
Anthony
,
R. J.
,
Oldfield
,
M. L. G.
,
Jones
,
T. V.
, and
LaGraff
,
J. E.
,
1999
, “
Development of High Density Arrays of Thin Film Heat Transfer Gauges
,”
5th ASME/JSME Thermal Engineering Joint Conference
,
San Diego, CA
, ASME Paper No. AJTE99-6159.
19.
Anthony
,
R. J.
, and
Clark
,
J. P.
,
2013
, “
A Review of the AFRL Turbine Research Facility
,”
ASME Turbo Expo 2013
,
San Antonio, TX
,
ASME Paper No. GT2013-94741
.
20.
Anthony
,
R. J.
,
Clark
,
J. P.
,
Finnegan
,
J. M.
, and
Johnson
,
P. D.
,
2012
, “
Modifications and Upgrades to the AFRL Turbine Research Facility
,”
ASME Turbo Expo 2012
,
Copenhagen, Denmark
,
ASME Paper No. GT2012-70084
.
21.
Haldeman
,
C. W.
,
Mathison
,
R. M.
,
Dunn
,
M. G.
,
Southworth
,
S. A.
,
Harral
,
J. W.
, and
Heltland
,
G.
,
2008
, “
Aerodynamic and Heat Flux Measurements in a Single-Stage Fully Cooled Turbine–Part II: Experimental Results
,”
ASME J. Turbomach.
,
130
(
2
), p.
021016
.
22.
Dunn
,
M. G.
, and
Haldeman
,
C. W.
, Jr
.,
1995
, “
Phase-Resolved Surface Pressure and Heat Transfer Measurements on the Blade of a Two-Stage Turbine
,”
ASME J. Fluids Eng.
,
117
(
4
), pp.
653
658
.
23.
Clark
,
J. P.
,
Polanka
,
M. D.
,
Meininger
,
M.
, and
Praisner
,
T. J.
,
2006
, “
Validation of Heat-Flux Predictions on the Outer Air-Seal of a Transonic Turbine Blade
,”
ASME J. Turbomach.
,
128
(
3
), pp.
589
595
.
24.
Ooten
,
M. K.
,
Anthony
,
R. J.
,
Lethander
,
A. T.
, and
Clark
,
J. P.
,
2016
, “
Unsteady Aerodynamic Interaction in a Closely-Coupled Turbine Consistent with Contra-Rotation
,”
ASME J. Turbomach.
,
138
(
6
), p.
061004
.
You do not currently have access to this content.