Abstract

Inertial particle separators (IPS) are air-cleaning devices integrated with air intakes or engine inlets to remove potentially harmful particles through the action of centrifuging. Their geometry is defined by a mean gas path, which sits at the centroid of a duct cross section. Advances in additive manufacturing are opening up new opportunities to explore a wider design space and optimize for more mission-specific requirements. The current work presents design guidelines for these devices and explores the effect of certain geometric parameters on the competing objectives of maximum separation efficiency with minimum pressure loss, through a reduced-order model. The model framework computes the centripetal drag force by first transforming the principal mean gas path into the Frenet–Serret reference frame to measure the local radius of curvature, and second, solving the local one-dimensional flow field by application of the isentropic flow equations for ideal gas. The loss in pressure due to wall friction, bends, and rapid area expansion are accounted for at each point along the gas path. The capability of this approach is demonstrated through comparison with a known test case in the literature, followed by application to a hypothetical conceptual design. Primary design parameters of splitter position, throat position, gas path curvature (through spline control points), and scavenge mass flow are chosen for investigation. Key findings are that the IPS cross-sectional area and hump curvature could be used together as effective tuning parameters, to maximize the separation efficiency for a given target test dust.

References

1.
Barone
,
D.
,
Loth
,
E.
, and
Snyder
,
P. H.
,
2012
, “
A 2-D Inertial Particle Separator Research Facility
,”
28th AIAA Aerodynamic Measurement Technology, Ground Testing & Flight Testing Conference
,
New Orleans, LA
, June p.
3290
.
2.
Snyder
,
P. H.
,
Barone
,
D.
, and
Loth
,
E.
,
2015
, “
Unsteady Flow Dynamics Within an Inertial Particle Separator
,”
Proceedings of the ASME Turbo Expo
,
Montreal, Canada
,
June 15–19
, Vol.
1
.
3.
Connolly
,
B. J.
,
Loth
,
E.
, and
Smith
,
C. F.
,
2023
, “
Efficiency of Inertial Particle Separators
,”
Powder Technol.
,
413
, p.
118004
.
4.
Connolly
,
B. J.
,
Loth
,
E.
, and
Smith
,
C. F.
, III,
2023
, “
Turbine Engine Inertial Particle Separator With Particle Rebound Suppression
,” US Patent 11834988.
5.
Filippone
,
A.
, and
Bojdo
,
N.
,
2010
, “
Turboshaft Engine Air Particle Separation
,”
Prog. Aerosp. Sci.
,
46
(
5–6
), pp.
224
245
.
6.
Dziubak
,
T
,
Ba¸kała
,
L
,
Karczewski
,
M
, and
Tomaszewski
,
M.
,
2020
, “
Numerical Research on Vortex Tube Separator for Special Vehicle Engine Inlet Air Filter
,”
Sep. Purif. Technol.
,
237
, p.
116463
.
7.
Acharya
,
A. S.
,
Lowe
,
K. T.
, and
Ng
,
W. F.
,
2023
, “
Mean Flow Characteristics Downstream of a Vortex Tube Separator Array
,”
AIAA J.
,
61
(
11
), pp.
4990
5008
.
8.
Borup
,
D. D.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2020
, “
Experimental Analysis of a Particle Separator Design With Full-Field Three-Dimensional Measurements
,”
ASME J. Turbomach.
,
142
(
10
), p.
101002
.
9.
Musgrove
,
G. O.
,
Barringer
,
M. D.
,
Thole
,
K. A.
,
Grover
,
E.
, and
Barker
,
J.
,
2009
, “
Computational Design of a Louver Particle Separator for Gas Turbine Engines
,” pp.
1
11
.
10.
Rahaim
,
J. J.
,
Bourassa
,
C.
,
Buhler
,
J. P.
, and
Ratzlaff
,
J. R.
,
2019
, “
Cyclonic Separator for a Turbine Engine
,” US Patent 10450951.
11.
Vittal
,
B. V. R.
,
Tipton
,
D. L.
, and
Bennett
,
W. A.
,
1986
, “
Development of an Advanced Vaneless Inlet Particle Separator for Helicopter Engines
,”
J. Propul. Power
,
2
(
5
), pp.
438
444
.
12.
Saeed
,
F
, and
Al-garni
,
A. Z.
,
2007
, “
Analysis Method for Inertial Particle Separator
,”
J. Aircraft
,
44
(
4
), pp.
1150
1158
.
13.
Barone
,
D
,
Loth
,
E
, and
Snyder
,
P.
,
2017
, “
Influence of Particle Size on Inertial Particle Separator Efficiency
,”
Powder Technol.
,
318
, pp.
177
185
.
14.
Swamee
,
P. K.
, and
Jain
,
A. K.
,
1976
, “
Explicit Equations for Pipe-Flow Problems
,”
J. Hydraul. Div.
,
102
(
5
), pp.
657
664
.
15.
Idelchik
,
I. E.
,
Steinberg
,
M. O.
, and
Martynenko
,
O. G.
,
1986
,
Handbook of Hydraulic Resistance
, Vol.
2
,
Hemisphere Publishing Corporation
,
New York
.
16.
Massey
,
B. S.
, and
Ward-Smith
,
J.
,
2018
,
Mechanics of Fluids
,
CRC Press
,
London
.
17.
Ramachandran
,
O
,
Raynor
,
P. C.
, and
Leith
,
D.
,
1994
, “
Collection Efficiency and Pressure Drop for a Rotary-Flow Cyclone
,”
Filtr. Sep.
,
31
(
6
), pp.
631
630
.
18.
Schiller
,
L.
,
1933
, “
A Drag Coefficient Correlation
,”
Zeit. Ver. Deutsch. Ing.
,
77
, pp.
318
320
.
You do not currently have access to this content.