Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The controllable speed casing represents an exploring approach to casing technology, designed to enhance the adaptability of casing in compressors under variable working conditions. This paper developed a numerical study into the effects of the axial starting point of the rotatable ring in the controllable speed casing on stability enhancement and performance. Additionally, the study sought to unveil the action mechanism of the rotating casing on various flow elements within the tip passage. The findings indicated that the optimal axial starting point for achieving the most pronounced stability enhancement effect in each rotating speed of the rotatable ring was located at the tip leading edge. In terms of the flow mechanism, the rotation of the rotatable ring was found to enhance the throughflow of the mainstream and the tip vortex, while exacerbating the backflow of the tip leakage flow, which occurred at middle and rear of the tip clearance and had not evolved into tip vortex.

References

1.
Dickens
,
T.
, and
Day
,
I.
,
2011
, “
The Design of Highly Loaded Axial Compressors
,”
ASME J. Turbomach.
,
133
(
3
), p.
031007
.
2.
Day
,
I. J.
,
2016
, “
Stall, Surge, and 75 Years of Research
,”
ASME J. Turbomach.
,
138
(
1
), p.
011001
.
3.
Bergner
,
J.
,
Kinzel
,
M.
,
Schiffer
,
H. P.
, and
Hah
,
C.
,
2006
, “
Short Length-Scale Rotating Stall Inception in a Transonic Axial Compressor: Experimental Investigation
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol.
4241
, pp.
131
140
, ASME Paper No. GT-90209.
4.
Hah
,
C.
,
Bergner
,
J.
, and
Schiffer
,
H. P.
,
2006
, “
Short Length-Scale Rotating Stall Inception in a Transonic Axial Compressor: Criteria and Mechanisms
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol.
4241
, pp.
61
70
, ASME Paper No. GT-90045.
5.
Sun
,
X. F.
,
Dong
,
X.
, and
Sun
,
D. K.
,
2019
, “
Recent Development of Casing Treatments for Aero-Engine Compressors
,”
Chin. J. Aeronaut.
,
32
(
1
), pp.
1
36
.
6.
Müller
,
M. W.
,
Schiffer
,
H. P.
, and
Hah
,
C.
,
2007
, “
Effect of Circumferential Grooves on the Aerodynamic Performance of an Axial Single-Stage Transonic Compressor
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol.
47950
, pp.
115
124
, ASME Paper No. GT2007-27365.
7.
Sakuma
,
Y.
,
Watanabe
,
T.
,
Himeno
,
T.
,
Kato
,
D.
,
Murooka
,
T.
, and
Shuto
,
Y.
,
2014
, “
Numerical Analysis of Flow in a Transonic Compressor With a Single Circumferential Casing Groove: Influence of Groove Location and Depth on Flow Instability
,”
ASME J. Turbomach.
,
136
(
3
), p.
031017
.
8.
Mustaffa
,
A. F.
, and
Kanjirakkad
,
V.
,
2021
, “
Single and Multiple Circumferential Casing Groove for Stall Margin Improvement in a Transonic Axial Compressor
,”
ASME J. Turbomach.
,
143
(
7
), p.
071010
.
9.
Danner
,
F. C.
,
Kau
,
H. P.
,
Müller
,
M. M.
,
Schiffer
,
H. P.
, and
Brignole
,
G. A.
,
2009
, “
Experimental and Numerical Analysis of Axial Skewed Slot Casing Treatments for a Transonic Compressor Stage
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol.
48883
, pp.
227
238
, ASME Paper No. GT2009-59647.
10.
Chi
,
Z. D.
,
Chu
,
W. L.
,
Zhang
,
H. G.
, and
Zhang
,
Z. Y.
,
2023
, “
Stall Margin Evaluation and Data Mining Based Multi-objective Optimization Design of Casing Treatment for an Axial Compressor Rotor
,”
Phys. Fluids
,
35
(
8
), p.
086117
.
11.
Chi
,
Z. D.
,
Chu
,
W. L.
, and
Zhang
,
H. G.
,
2021
, “
Mechanism of Stability Enhancement With Shallow Reversed Slot-Type Casing Treatment in a Transonic Compressor
,”
J. Appl. Fluid. Mech.
,
14
(
6
), pp.
1691
1704
.
12.
Wang
,
W.
,
Lu
,
J. L.
,
Luo
,
X. Q.
,
Huang
,
R.
, and
Chu
,
W. L.
,
2020
, “
Failure Mechanism of Casing Treatment in Improving Stability of a Highly Loaded Two-Stage Axial Compressor
,”
Aerosp. Sci. Technol.
,
105
, p.
105979
.
13.
Zhang
,
H. G.
,
Dong
,
F. Y.
,
Wang
,
E. H.
,
Liu
,
W. H.
, and
Chu
,
W. L.
,
2022
, “
Effect of Different Radial Skewed Angles of Reversed Blade-Angle Slot Casing Treatment on Transonic Axial Flow Compressor Stability
,”
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
,
236
(
8
), pp.
1617
1632
.
14.
Yan
,
S.
, and
Chu
,
W. L.
,
2022
, “
Influence of Self-Circulating Casing Treatment With Double-Bleed Ports Structure on Compressor Performance
,”
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
,
234
(
11
), pp.
1743
1756
.
15.
Yan
,
S.
, and
Chu
,
W. L.
,
2020
, “
The Improvement of Transonic Compressor Performance by the Self-Circulating Casing Treatment
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
235
(
7
), pp.
1165
1176
.
16.
Ding
,
S. L.
,
Chen
,
S. W.
,
Hao
,
S. H.
, and
Wang
,
S. T.
,
2023
, “
Flow Instability Control of an Ultra-Highly Loaded Transonic Compressor Rotor Using Self-Excited Casing Bleed
,”
Phys. Fluids
,
35
(
6
), p.
066134
.
17.
Ding
,
S. L.
,
Chen
,
S. W.
,
Wang
,
S. T.
, and
Wang
,
Z. Q.
,
2022
, “
Flow Mechanism of Self-Recirculating Casing Treatment in a Low-Reaction Transonic Compressor Rotor
,”
Aerosp. Sci. Technol.
,
130
, p.
107925
.
18.
Zhang
,
H. G.
,
Wang
,
H.
,
Dong
,
F. Y.
,
Jing
,
F. Y.
, and
Chu
,
W. L.
,
2023
, “
Mechanism Study on the Effect of Self-Circulating Casing Treatment With Different Circumferential Coverage Ratios on the Axial Compressor Stability
,”
Phys. Fluids
,
35
(
5
), p.
056112
.
19.
Sun
,
X. F.
,
Sun
,
D. K.
,
Liu
,
X. H.
,
Yu
,
W. W.
, and
Wang
,
X. Y.
,
2014
, “
Theory of Compressor Stability Enhancement Using Novel Casing Treatment, Part I: Methodology
,”
J. Propul. Power
,
30
(
5
), pp.
1224
1235
.
20.
Sun
,
D. K.
,
Liu
,
X. H.
,
Jin
,
D. H.
,
Gui
,
X. M.
, and
Sun
,
X. F.
,
2014
, “
Theory of Compressor Stability Enhancement Using Novel Casing Treatment, Part Ⅱ: Experiment
,”
J. Propul. Power
,
30
(
5
), pp.
1236
1247
.
21.
Sun
,
D. K.
,
Nie
,
C. Q.
,
Liu
,
X. H.
,
Lin
,
F.
, and
Sun
,
X. F.
,
2016
, “
Further Investigation on Transonic Compressor Stall Margin Enhancement With Stall Precursor-Suppressed Casing Treatment
,”
ASME J. Turbomach.
,
138
(
2
), p.
021001
.
22.
Zhong
,
J. J.
, and
Wu
,
W. Y.
,
2019
, “A Rotatable Inner Endwall Casing for Compressor Rotor,” Chinese Patent: No. 201920122970.7.
23.
Wu
,
W. Y.
,
Zhao
,
J. Y.
, and
Zhong
,
J. J.
,
2022
, “
Influence of the Rotating Direction and Speed of Controllable Speed Casing on the Flow Stability of a Transonic Compressor Rotor Under Design Condition
,”
Aerosp. Sci. Technol.
,
126
, p.
107630
.
24.
Kumar
,
S. S.
,
Alone
,
D. B.
,
Thimmaiah
,
S. M.
,
Mudipalli
,
J. R. R.
,
Kumar
,
L.
,
Ganguli
,
R.
,
Kandagal
,
S. B.
, and
Jana
,
S.
,
2021
, “
Aerodynamic Behavior of a Transonic Axial Flow Compressor Stage With Self-Recirculating Casing Treatment
,”
Aerosp. Sci. Technol.
,
230
, p.
106587
.
25.
Ming
,
L. L.
,
Wu
,
Y. H.
,
Yang
,
Z. Y.
, and
Ouyang
,
H.
,
2022
, “
Numerical Study on the Influence of Mist-Air Mixtures on Axial Compressor Performance
,”
Aerosp. Sci. Technol.
,
123
, p.
107505
.
26.
Dong
,
B.
,
Zhao
,
Y. J.
,
Tang
,
T. Q.
, and
He
,
F.
,
2023
, “
Flow Effects of Microperforated-Panel Casing Treatments in a Contra-Rotating Fan
,”
Int. J. Mech. Sci.
,
239
, p.
107879
.
27.
Menter
,
F. R.
,
1993
, “
Zonal Two Equation K-W Turbulence Models for Aerodynamic Flows
,”
23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference
, p.
2906
, AIAA Paper No. AIAA-93-2906.
28.
Bardina
,
J. E.
,
Huang
,
P. G.
, and
Coakley
,
T. J.
,
1997
, “Turbulence Modeling Validation, Testing, and Development,” NASA Report No. TM-110446.
29.
Suder
,
K. L.
,
1996
, “Experimental Investigation of the Flow Field in a Transonic, Axial Flow Compressor With Respect to the Development of Blockage and Loss,” NASA Report No. TM107310.
30.
Bruna
,
D.
, and
Turner
,
M. G.
,
2013
, “
Isothermal Boundary Condition at Casing Applied to the Rotor 37 Transonic Axial Flow Compressor
,”
ASME J. Turbomach.
,
135
(
3
), p.
034501
.
31.
Suder
,
K. L.
, and
Celestina
,
M. L.
,
1996
, “
Experimental and Computational Investigation of the Tip Clearance Flow in a Transonic Axial Compressor Rotor
,”
ASME J. Turbomach.
,
118
(
2
), pp.
218
229
.
32.
Furukawa
,
M.
,
Inoue
,
M.
,
Saiki
,
K.
, and
Yamada
,
K.
,
1999
, “
The Role of Tip Leakage Vortex Breakdown in Compressor Rotor Aerodynamics
,”
ASME J. Turbomach.
,
121
(
3
), pp.
469
480
.
33.
Leibovich
,
S.
,
2003
, “
The Structure of Vortex Breakdown
,”
Annu. Rev. Fluid Mech.
,
10
(
1
), pp.
221
246
.
34.
Puterbaugh
,
S. L.
, and
Brendel
,
M.
,
1997
, “
Tip Clearance Flow-Shock Interaction in a Transonic Compressor Rotor
,”
J. Propul. Power
,
13
(
1
), pp.
24
30
.
35.
Cameron
,
J. D.
,
Bennington
,
M. A.
,
Ross
,
M. H.
,
Morris
,
S. C.
,
Du
,
J.
,
Lin
,
F.
, and
Chen
,
J. Y.
,
2013
, “
The Influence of Tip Clearance Momentum Flux on Stall Inception in a High-Speed Axial Compressor
,”
ASME J. Turbomach.
,
135
(
5
), p.
051005
.
You do not currently have access to this content.