Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

A resolvent analysis framework for the axial compressor is established, and the impedance optimization is achieved based on the resolvent analysis framework for the impedance boundary condition casing treatment. This framework is derived by treating the nonlinearity in the perturbation equations as an unknown forcing, the linear relationship between wall impedance and energy gains is obtained. The validity of this framework is confirmed through experiments on rotating inlet distortion, which captures the most susceptible frequency for the stall points of the compressor. The resolvent analysis framework further confirms that the first-order circumferential mode exhibits the highest energy in the given cases. Subsequently, the proposed impedance optimization method is tested under throttling operating conditions, especially focusing on the first-order circumferential mode. The introduction of a favorable impedance boundary condition notably reduces energy gain within the low-order circumferential mode and in the range of the rotor rotating frequency, particularly in near-stall operating conditions. The energy suppression mechanism of the impedance boundary condition casing treatment is investigated, demonstrating that the impedance boundary condition, with an optimal impedance value, significantly suppresses perturbations compared to the case with the solid wall boundary condition. Lastly, a design method for the impedance boundary condition casing treatment is discussed, offering a reliable theoretical design tool for enhancing the stall margin of axial compressors.

References

1.
Tan
,
C. S.
,
Day
,
I.
,
Morris
,
S.
, and
Wadia
,
A.
,
2010
, “
Spike-Type Compressor Stall Inception, Detection, and Control
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
275
300
.
2.
Day
,
I. J.
,
Breuer
,
T.
,
Escuret
,
J.
,
Cherrett
,
M.
, and
Wilson
,
A.
,
1999
, “
Stall Inception and the Prospects for Active Control in Four High-Speed Compressors
,”
ASME J. Turbomach.
,
121
(
1
), pp.
18
27
.
3.
Bae
,
J. W.
,
Breuer
,
K. S.
, and
Tan
,
C. S.
,
2005
, “
Active Control of Tip Clearance Flow in Axial Compressors
,”
ASME J. Turbomach.
,
127
(
2
), pp.
352
362
.
4.
Huang
,
X.
,
Chen
,
H.
, and
Fu
,
S.
,
2008
, “
CFD Investigation on the Circumferential Grooves Casing Treatment of Transonic Compressor
,”
Proceedings of the Volume 6: Turbomachinery, Parts A, B, and C, ASMEDC
,
Berlin, Germany
,
June 9–13
, pp.
581
589
.
5.
Houghton
,
T.
, and
Day
,
I.
,
2010
, “
Enhancing the Stability of Subsonic Compressors Using Casing Grooves
,”
ASME J. Turbomach.
,
133
(
2
), p.
021007
.
6.
Maher
,
N. H.
,
Ross
,
M. H.
,
Morris
,
S. C.
,
Priebe
,
S.
,
Jothiprasad
,
G.
,
Allan
,
D.
,
McNulty
,
G.
,
Macrorie
,
M.
, and
Mallina
,
R.
,
2023
, “
Experimental and Computational Investigation of an Advanced Casing Treatment in a Single-Stage High-Speed Compressor
,”
ASME J. Turbomach.
,
145
(
7
), p.
071003
.
7.
Mustaffa
,
A. F.
, and
Kanjirakkad
,
V.
,
2021
, “
Single and Multiple Circumferential Casing Groove for Stall Margin Improvement in a Transonic Axial Compressor
,”
ASME J. Turbomach.
,
143
(
7
), p.
071010
.
8.
Sun
,
X.
,
Dong
,
X.
, and
Sun
,
D.
,
2019
, “
Recent Development of Casing Treatments for Aero-Engine Compressors
,”
Chin. J. Aeronaut.
,
32
(
1
), pp.
1
36
.
9.
Sun
,
D.
,
Liu
,
X.
,
Jin
,
D.
,
Gui
,
X.
, and
Sun
,
X.
,
2014
, “
Theory of Compressor Stability Enhancement Using Novel Casing Treatment, Part II: Experiment
,”
J. Propuls. Power
,
30
(
5
), pp.
1236
1247
.
10.
Hah
,
C.
,
2023
, “
Stall Margin Improvement in a Transonic Compressor With a Casing Treatment: Flow Mechanism
,”
ASME J. Turbomach.
,
145
(
4
), p.
041004
.
11.
Hathaway
,
M. D.
,
2007
, Passive Endwall Treatments for Enhancing Stability. Report No. ARL-TR-3878.
12.
Ba
,
D.
,
Zhang
,
Q.
,
Du
,
J.
,
Li
,
Z.
,
Zhang
,
H.
, and
Nie
,
C.
,
2020
, “
Design Optimization of Axial Slot Casing Treatment in a Highly-Loaded Mixed-Flow Compressor
,”
Aerosp. Sci. Technol.
,
107
(
12
), p.
106262
.
13.
Chi
,
Z.
,
Chu
,
W.
,
Zhang
,
H.
, and
Zhang
,
Z.
,
2023
, “
Stall Margin Evaluation and Data Mining Based Multi-Objective Optimization Design of Casing Treatment for an Axial Compressor Rotor
,”
Phys. Fluids
,
35
(
8
), p.
086117
.
14.
Camp
,
T. R.
, and
Day
,
I. J.
,
1997
, “
A Study of Spike and Modal Stall Phenomena in a Low-Speed Axial Compressor
,”
Proceedings of the Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
,
Orlando, FL
,
June 2–5
.
15.
Freeman
,
C.
,
Wilson
,
A. G.
,
Day
,
I. J.
, and
Swinbanks
,
M. A.
,
1998
, “
Experiments in Active Control of Stall on an Aeroengine Gas Turbine
,”
ASME J. Turbomach.
,
120
(
4
), pp.
637
647
.
16.
Nie
,
C.
,
Xu
,
G.
,
Cheng
,
X.
, and
Chen
,
J.
,
2002
, “
Micro Air Injection and Its Unsteady Response in a Low-Speed Axial Compressor
,”
ASME J. Turbomach.
,
124
(
4
), pp.
572
579
.
17.
Sun
,
X.
,
Sun
,
D.
,
Liu
,
X.
,
Yu
,
W.
, and
Wang
,
X.
,
2014
, “
Theory of Compressor Stability Enhancement Using Novel Casing Treatment, Part I: Methodology
,”
J. Propuls. Power
,
30
(
5
), pp.
1224
1235
.
18.
Sun
,
D.
,
Nie
,
C.
,
Liu
,
X.
,
Lin
,
F.
, and
Sun
,
X.
,
2016
, “
Further Investigation on Transonic Compressor Stall Margin Enhancement With Stall Precursor-Suppressed Casing Treatment
,”
ASME J. Turbomach.
,
138
(
2
), p.
021001
.
19.
Sun
,
D.
,
Li
,
J.
,
Dong
,
X.
,
Xu
,
R.
, and
Sun
,
X.
,
2022
, “
Foam-Metal Casing Treatment on an Axial Flow Compressor: Stability Improvement and Noise Reduction
,”
ASME J. Turbomach.
,
144
(
1
), p.
011003
.
20.
Zhang
,
M.
,
Hu
,
J.
,
Fang
,
Y.
,
Dong
,
X.
,
Pan
,
T.
,
Sun
,
D.
, and
Sun
,
X.
,
2023
, “
Stability Analysis of Axial Compressors With Wire Mesh Casing Treatment
,”
Phys. Fluids
,
35
(
11
), p.
114107
.
21.
Sun
,
D.
,
Hu
,
J.
,
Xu
,
D.
,
Fang
,
Y.
,
Dong
,
X.
,
Zhang
,
M.
, and
Sun
,
X.
,
2024
, “
Stall Inception Prediction of Transonic Compressor With Wire Mesh Casing Treatment
,”
AIAA J.
,
62
(
2
), pp.
725
740
.
22.
Yeh
,
C.-A.
, and
Taira
,
K.
,
2019
, “
Resolvent-Analysis-Based Design of Airfoil Separation Control
,”
J. Fluid Mech.
,
867
(
10
), pp.
572
610
.
23.
Liu
,
Q.
,
Sun
,
Y.
,
Yeh
,
C.-A.
,
Ukeiley
,
L. S.
,
Cattafesta
,
L. N.
, and
Taira
,
K.
,
2021
, “
Unsteady Control of Supersonic Turbulent Cavity Flow Based on Resolvent Analysis
,”
J. Fluid Mech.
,
925
(
20
), p.
A5
.
24.
Luhar
,
M.
,
Sharma
,
A. S.
, and
McKeon
,
B. J.
,
2015
, “
A Framework for Studying the Effect of Compliant Surfaces on Wall Turbulence
,”
J. Fluid Mech.
,
768
(
7
), pp.
415
441
.
25.
Jafari
,
A.
,
McKeon
,
B. J.
, and
Arjomandi
,
M.
,
2023
, “
Frequency-Tuned Surfaces for Passive Control of Wall-Bounded Turbulent Flow—a Resolvent Analysis Study
,”
J. Fluid Mech.
,
959
(
6
), p.
A26
.
26.
He
,
C.
,
Ma
,
Y.
,
Liu
,
X.
,
Sun
,
D.
, and
Sun
,
X.
,
2018
, “
Aerodynamic Instabilities of Swept Airfoil Design in Transonic Axial-Flow Compressors
,”
AIAA J.
,
56
(
5
), pp.
1878
1893
.
27.
Fang
,
Y.
,
Sun
,
D.
,
Xu
,
D.
,
He
,
C.
, and
Sun
,
X.
,
2023
, “
Rapid Prediction of Compressor Rotating Stall Inception Using Arnoldi Eigenvalue Algorithm
,”
AIAA J.
,
61
(
8
), pp.
3566
3578
.
28.
Xu
,
D.
,
He
,
C.
,
Sun
,
D.
, and
Sun
,
X.
,
2020
, “
Analysis Method of Compressor Stability Based on Eigenvalue Theory
,”
J. Fluids Eng.
,
142
(
7
), p.
071204
.
29.
McKeon
,
B. J.
, and
Sharma
,
A. S.
,
2010
, “
A Critical-Layer Framework for Turbulent Pipe Flow
,”
J. Fluid Mech.
,
658
(
17
), pp.
336
382
.
30.
Chu
,
B.-T.
,
1965
, “
On the Energy Transfer to Small Disturbances in Fluid Flow (Part I)
,”
Acta Mech.
,
1
(
3
), pp.
215
234
.
31.
Sierra-Ausin
,
J.
,
Fabre
,
D.
,
Citro
,
V.
, and
Giannetti
,
F.
,
2022
, “
Acoustic Instability Prediction of the Flow Through a Circular Aperture in a Thick Plate via an Impedance Criterion
,”
J. Fluid Mech.
,
943
(
14
), p.
A48
.
32.
Gabard
,
G.
,
2020
, “
Generalised Acoustic Impedance for Viscous Fluids
,”
J. Sound Vib.
,
484
(
21
), p.
115525
.
33.
He
,
L.
,
1997
, “
Computational Study of Rotating-Stall Inception in Axial Compressors
,”
J. Propuls. Power
,
13
(
1
), pp.
31
38
.
34.
Sun
,
X.
,
Liu
,
X.
,
Hou
,
R.
, and
Sun
,
D.
,
2013
, “
A General Theory of Flow-Instability Inception in Turbomachinery
,”
AIAA J.
,
51
(
7
), pp.
1675
1687
.
35.
Sun
,
X.
,
Ma
,
Y.
,
Liu
,
X.
, and
Sun
,
D.
,
2016
, “
Flow Stability Model of Centrifugal Compressors Based on Eigenvalue Approach
,”
AIAA J.
,
54
(
8
), pp.
2361
2376
.
36.
Yang
,
Z.
,
Wu
,
Y.
, and
Ouyang
,
H.
,
2022
, “
Investigation on Mode Characteristics of Rotating Instability and Rotating Stall in an Axial Compressor
,”
ASME J. Turbomach.
,
144
(
6
), p.
061010
.
37.
Zhang
,
M.
,
Zhang
,
J.
,
Hu
,
J.
,
Dong
,
X.
,
Sun
,
D.
, and
Sun
,
X.
,
2024
, “
Effect of Wire Mesh Casing Treatment on Axial Compressor Performance and Stability
,”
Chin. J. Aeronaut.
,
37
(
3
), pp.
60
76
.
You do not currently have access to this content.