Abstract

Sweeping jet (SJ) is a self-excited flow control device that can generate continuous and periodic flow, which makes it a promising geometry for film cooling. However, the cooling performance of current SJ configurations is not significantly better than that of 777-shaped holes. This paper presents two modified SJ configurations, named shaped SJ1 and shaped SJ2, which possess distinct shaped exit geometries. The spatiotemporal coolant distributions were comprehensively quantified for the 777-shaped hole, the compact SJ (with compact geometry), the shaped SJ1, and the shaped SJ2. The instantaneous cooling effectiveness distributions of the four configurations at blowing ratios (M) ranging from 0.5 to 3.0 were measured using the fast pressure-sensitive paint technique. The shaped SJ2 integrated the cooling characteristics of the 777-shaped hole and SJ. It maintained stability at a relatively low M, while began to oscillate when M was increased above 1.5. The shaped SJ design exhibited superior cooling effectiveness at both low and high M of 0.5 to 3.0. A proper orthogonal decomposition analysis and simulations illustrated the oscillation processes and flow structures within the SJ configuration. The shaped SJ2 showed a reduced outlet momentum and a more even distribution of film coverage than the 777-shaped hole, resulting in considerably improved cooling performance.

References

1.
Han
,
J.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed.,
CRC Press
,
New York
.
2.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propuls. Power
,
22
(
2
), pp.
249
270
.
3.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
4
), pp.
441
453
.
4.
Schroeder
,
R.
, and
Thole
,
K.
,
2014
, “
Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole
,”
Proceedings of the ASME Turbo Expo 2014
,
Düsseldorf, Germany
,
June 16–20
, pp.
1
13
.
5.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. L. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
,
2002
, “
A Converging Slot-Hole Film-Cooling Geometry-Part 1: Low-Speed Flat-Plate Heat Transfer and Loss
,”
ASME J. Turbomach.
,
124
(
3
), pp.
453
460
.
6.
Han
,
C.
,
Ren
,
J.
, and
Jiang
,
H.
,
2014
, “
Experimental Investigations of SYCEE Film Cooling Performance on a Plate and a Tested Vane of an F-Class Gas Turbine
,”
Proceedings of the Proceedings of ASME Turbo Expo 2014
,
Düsseldorf, Germany
,
June 16–20
, pp.
1
12
.
7.
Ely
,
M. J.
, and
Jubran
,
B. A.
,
2008
, “
A Numerical Study on Increasing Film Cooling Effectiveness Through the Use of Sister Holes
,”
Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea and Air
,
Berlin, Germany
,
June 9–13
, pp.
341
350
.
8.
Liu
,
C.-L.
,
Ye
,
L.
,
Zhang
,
F.
,
Huang
,
R.
, and
Li
,
B.
,
2021
, “
Film Cooling Performance Evaluation of the Furcate Hole With Cross-Flow Coolant Injection: A Comparative Study
,”
Int. J. Heat Mass Transf.
,
164
(
2
), p.
120457
.
9.
Heidmann
,
J. D.
, and
Ekkad
,
S.
,
2008
, “
A Novel Antivortex Turbine Film-Cooling Hole Concept
,”
ASME J. Turbomach.
,
130
(
3
), p.
031020
.
10.
Choi
,
D.-W.
,
Lee
,
K.-D.
, and
Kim
,
K.-Y.
,
2013
, “
Analysis and Optimization of Double-Jet Film-Cooling Holes
,”
J. Thermophys. Heat Transf.
,
27
(
2
), pp.
246
254
.
11.
Yao
,
J.
,
Xu
,
J.
,
Zhang
,
K.
,
Lei
,
J.
, and
Wright
,
L. M.
,
2018
, “
Interaction of Flow and Film-Cooling Effectiveness Between Double-Jet Film-Cooling Holes With Various Spanwise Distances
,”
ASME J. Turbomach.
,
140
(
12
), p.
121011
.
12.
Kusterer
,
K.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
,
2006
, “
Double-Jet Ejection of Cooling Air for Improved Film Cooling
,”
Proceedings of the ASME Turbo Expo 2006
,
Barcelona, Spain
,
May 8–11
, Vol. 129, pp.
809
815
.
13.
He
,
J.
,
Yao
,
J.
,
Yang
,
X.
,
Zhang
,
K.
,
Lei
,
J.
, and
Xie
,
G.
,
2023
, “
Investigation on Overall Performance of Double-Jet Film Cooling Holes With Various Spanwise Distance
,”
Int. J. Therm. Sci.
,
183
(
5
), p.
107841
.
14.
Wang
,
K.
,
Shao
,
H.
,
Peng
,
D.
,
Liu
,
Y.
, and
Zhou
,
W.
,
2022
, “
Transonic Vane Film Cooling With Crescent-Shaped Craters Using an Endoscopic Pressure-Sensitive Paint Technique
,”
Appl. Therm. Eng.
,
205
(
2
), p.
118081
.
15.
Zhou
,
W.
, and
Hu
,
H.
,
2016
, “
Improvements of Film Cooling Effectiveness by Using Barchan Dune Shaped Ramps
,”
Int. J. Heat Mass Transf.
,
103
(
1
), pp.
442
456
.
16.
Bunker
,
R. S.
,
2010
, “
Bunker Breaking the Limits of Di Usion Shaped Holes
,”
Heat Transf. Res.
,
41
(
6
), pp.
627
650
.
17.
Wen
,
X.
,
Li
,
Z.
,
Zhou
,
L.
,
Yu
,
C.
,
Muhammad
,
Z.
,
Liu
,
Y.
,
Wang
,
S.
, and
Liu
,
Y.
,
2020
, “
Flow Dynamics of a Fluidic Oscillator With Internal Geometry Variations
,”
Phys. Fluids
,
32
(
7
), p.
075111
.
18.
Wen
,
X.
,
Liu
,
Y.
, and
Tang
,
H.
,
2018
, “
Unsteady Behavior of a Sweeping Impinging Jet: Time-Resolved Particle Image Velocimetry Measurements
,”
Exp. Therm. Fluid Sci.
,
96
(
2
), pp.
111
127
.
19.
Hossain
,
M. A.
,
Ameri
,
A.
,
Gregory
,
J. W.
, and
Bons
,
J.
,
2021
, “
Effects of Fluidic Oscillator Nozzle Angle on the Flowfield and Impingement Heat Transfer
,”
AIAA J.
,
59
(
6
), pp.
2113
2125
.
20.
Kim
,
S. H.
,
Kim
,
H. D.
, and
Kim
,
K. C.
,
2019
, “
Measurement of Two-Dimensional Heat Transfer and Flow Characteristics of an Impinging Sweeping Jet
,”
Int. J. Heat Mass Transf.
,
136
(
3
), pp.
415
426
.
21.
Zhou
,
W.
,
Yuan
,
L.
,
Liu
,
Y.
,
Peng
,
D.
, and
Wen
,
X.
,
2019
, “
Heat Transfer of a Sweeping Jet Impinging at Narrow Spacings
,”
Exp. Therm. Fluid Sci.
,
103
(
1
), pp.
89
98
.
22.
Kong
,
X.
,
Zhang
,
Y.
,
Li
,
G.
,
Lu
,
X.
, and
Zhu
,
J.
,
2022
, “
Heat Transfer and Flow Structure Characteristics of Film-Cooled Leading Edge Model With Sweeping and Normal Jets
,”
Int. Commun. Heat Mass Transf.
,
138
(
2
), p.
106338
.
23.
Thurman
,
D.
,
Poinsatte
,
P.
,
Ameri
,
A.
,
Culley
,
D.
,
Raghu
,
S.
, and
Shyam
,
V.
,
2016
, “
Investigation of Spiral and Sweeping Holes
,”
ASME J. Turbomach.
,
138
(
9
), p.
091007
.
24.
Hossain
,
M. A.
,
Prenter
,
R.
,
Lundgreen
,
R. K.
,
Ameri
,
A.
,
Gregory
,
J. W.
, and
Bons
,
J. P.
,
2018
, “
Experimental and Numerical Investigation of Sweeping Jet Film Cooling
,”
ASME J. Turbomach.
,
140
(
3
), p.
031009
.
25.
Hossain
,
M. A.
,
Ameri
,
A.
,
Gregory
,
J. W.
, and
Bons
,
J. P.
,
2020
, “
Sweeping Jet Film Cooling at High Blowing Ratio on a Turbine Vane
,”
ASME J. Turbomach.
,
142
(
12
), p.
121010
.
26.
Sang
,
Y.
,
Shan
,
Y.
,
Zhang
,
J.
, and
Tan
,
X.
,
2022
, “
Numerical Investigation of Sweeping Jet Film Cooling on a Flat Plate
,”
Therm. Sci. Eng. Prog.
,
29
(
1
), p.
101230
.
27.
Zhou
,
W.
,
Wang
,
K.
,
Yuan
,
T.
,
Wen
,
X.
,
Peng
,
D.
, and
Liu
,
Y.
,
2022
, “
Spatiotemporal Distributions of Sweeping Jet Film Cooling With a Compact Geometry
,”
Phys. Fluids
,
34
(
2
), p.
025113
.
28.
Shadid
,
J. N.
, and
Eckert
,
E. R. G.
,
1991
, “
The Mass Transfer Analogy to Heat Transfer in Fluids With Temperature-Dependent Properties
,”
ASME J. Turbomach.
,
113
(
1
), pp.
27
33
.
29.
Jones
,
T. V.
,
1999
, “
Theory for the Use of Foreign Gas in Simulating Film Cooling
,”
Int. J. Heat Fluid Flow
,
20
(
3
), pp.
349
354
.
30.
Wright
,
L. M.
,
Gao
,
Z.
,
Varvel
,
T. A.
, and
Han
,
J. C.
,
2005
, “
Assessment of Steady State PSP, TSP, and IR Measurement Techniques for Flat Plate Film Cooling
,”
Proceedings of the Proceedings of ASME Summer Heat Transfer Conference 2005
,
San Francisco, CA
,
July 17–22
, pp.
1
10
.
31.
Charbonnier
,
D.
,
Ott
,
P.
,
Jonsson
,
M.
,
Cottier
,
F.
,
Köbke
,
T.
, and
Köbke
,
T.
,
2009
, “
Experimental and Numerical Study of the Thermal Performance of a Film Cooled Turbine Platform
,”
Proceedings of the ASME Turbo Expo 2009
,
Orlando, FL
,
June 8–12
, ASME, Vol. 3, Parts A and B, pp.
1027
1038
.
32.
Zhou
,
W.
, and
Hu
,
H.
,
2017
, “
A Novel Sand-Dune-Inspired Design for Improved Film Cooling Performance
,”
Int. J. Heat Mass Transf.
,
110
(
1
), pp.
908
920
.
33.
Johnson
,
B.
, and
Hu
,
H.
,
2016
, “
Measurement Uncertainty Analysis in Determining Adiabatic Film Cooling Effectiveness by Using Pressure Sensitive Paint Technique
,”
ASME J. Turbomach.
,
138
(
12
), p.
121004
.
34.
Zhou
,
W.
,
Chen
,
H.
,
Liu
,
Y.
,
Wen
,
X.
, and
Peng
,
D.
,
2018
, “
Unsteady Analysis of Adiabatic Film Cooling Effectiveness for Discrete Hole With Oscillating Mainstream Flow
,”
Phys. Fluids
,
30
(
12
), p.
127103
.
35.
Sirovich
,
L.
, and
Kirby
,
M.
,
1987
, “
Low-Dimensional Procedure for the Characterization of Human Faces
,”
J. Opt. Soc. Am. A
,
4
(
3
), pp.
519
524
.
You do not currently have access to this content.