Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Roughness caused by deposition, erosion, and additive manufacturing can significantly affect gas turbine efficiency. Previous research has often examined film cooling performance under limited roughness configurations, resulting in inconclusive findings. In this study, film cooling performances under various upstream roughness conditions were investigated to simulate the roughness-affected film cooling performance of the suction side and the endwall. Three roughness heights (k/D = 0.1, 0.2, and 0.4) and shapes (ks/k = 0.17, 0.67, and 1.95) were selected to cover a wide range of surface roughness characteristics. Three blowing ratios were examined (M = 0.5, 1.0, and 1.5). The weakly roughened surfaces (ks /k = 0.17) showed improved cooling effectiveness as k/D increased. Meanwhile, the moderately and severely roughened surfaces (ks /k = 0.67 and 1.95) showed a decrease in cooling effectiveness with increasing k/D at M = 0.5 and 1.0 but an increase at M = 1.5. Cases with shallower and higher roughness elements at M = 1.5 outperformed the smooth plate. Subsequently, a similarity hypothesis for film cooling effectiveness was proposed. At all blowing ratios, the scaled cooling effectiveness profiles converged around the smooth plate results for ks /D < 0.391, encompassing common turbine roughness scales, including irregularly roughened surfaces. Deviations emerged at ks /D = 0.782, and they were correlated with the deteriorated regions observed at various blowing ratios. Ensemble-averaged scaled cooling effectiveness exponentially grew with increasing roughness scale for all blowing ratios, and an empirical expression based on the smooth plate result and roughness scale was proposed (R2 > 0.97). Finally, the experimental results and fitting correlations of cooling effectiveness were compared. The results demonstrated that the proposed similarity hypothesis potentially facilitated the fast prediction of the roughness-affected film cooling performance.

References

1.
Hamed
,
A.
,
Tabakoff
,
W. C.
, and
Wenglarz
,
R. V.
,
2006
, “
Erosion and Deposition in Turbomachinery
,”
J. Propul. Power
,
22
(
2
), pp.
350
360
.
2.
Kim
,
J.
,
Dunn
,
M. G.
,
Baran
,
A. J.
,
Wade
,
D. P.
, and
Tremba
,
E. L.
,
1993
, “
Deposition of Volcanic Materials in the Hot Sections of Two Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
115
(
3
), pp.
641
651
.
3.
Wang
,
J.
,
Tian
,
K.
,
Zhu
,
H.
,
Zeng
,
M.
, and
Sundén
,
B.
,
2020
, “
Numerical Investigation of Particle Deposition in Film-Cooled Blade Leading Edge
,”
Numer. Heat Transfer, Part A
,
77
(
6
), pp.
579
598
.
4.
Jelly
,
T. O.
,
Nardini
,
M.
,
Rosenzweig
,
M.
,
Leggett
,
J.
,
Marusic
,
I.
, and
Sandberg
,
R. D.
,
2023
, “
High-Fidelity Computational Study of Roughness Effects on High Pressure Turbine Performance and Heat Transfer
,”
Int. J. Heat Fluid Flow
,
101
, p.
109134
.
5.
Huang
,
W.
,
Zhang
,
T.
,
Zhou
,
W.
, and
Liu
,
Y.
,
2023
, “
Influence of Dust Purge Hole on Thermal Performance and Particle Deposition of a Turbine Blade With Ribbed Internal Cooling Channel
,”
J. Vis.
,
26
(
2
), pp.
299
316
.
6.
Singh
,
S.
, and
Tafti
,
D. K.
,
2016
, “
Prediction of Sand Transport and Deposition in a Two-Pass Internal Cooling Duct
,”
ASME J. Eng. Gas Turbines Power
,
138
(
7
), p.
072606
.
7.
Alfred
,
I.
,
Nicolaus
,
M.
,
Hermsdorf
,
J.
,
Kaierle
,
S.
,
Möhwald
,
K.
,
Maier
,
H.-J.
, and
Wesling
,
V.
,
2018
, “
Advanced High Pressure Turbine Blade Repair Technologies
,”
Procedia CIRP
,
74
, pp.
214
217
.
8.
Tabakoff
,
W.
,
1987
, “
Compressor Erosion and Performance Deterioration
,”
ASME J. Fluids Eng.
,
109
(
3
), pp.
297
306
.
9.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
,
Chiang
,
H. D.
, and
Elovic
,
E.
,
1985
, “
Effect of Surface Roughness on Film Cooling Performance
,”
ASME J. Eng. Gas Turbines Power
,
107
(
1
), pp.
111
116
.
10.
Barlow
,
D. N.
, and
Kim
,
Y. W.
,
1995
, “
Effect of Surface Roughness on Local Heat Transfer and Film Cooling Effectiveness
,”
ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition
,
Houston, TX
,
June 5–8
,
p. V004T09A014
.
11.
Schmidt
,
D. L.
,
Sen
,
B.
, and
Bogard
,
D. G.
,
1996
, “
Effects of Surface Roughness on Film Cooling
,”
ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition
,
Birmingham, UK
,
June 10–13
,
p. V004T09A035
.
12.
Lawson
,
S. A.
, and
Thole
,
K. A.
,
2010
, “
Effects of Simulated Particle Deposition on Film Cooling
,”
ASME J. Turbomach.
,
133
(
2
), p.
021009
.
13.
Bogard
,
D. G.
,
Snook
,
D.
, and
Kohli
,
A.
,
2003
, “
Rough Surface Effects on Film Cooling of the Suction Side Surface of a Turbine Vane
,”
ASME 2003 International Mechanical Engineering Congress and Exposition
,
Washington, DC
,
Nov. 15–21
, pp.
89
97
.
14.
Rutledge
,
J. L.
,
Robertson
,
D.
, and
Bogard
,
D. G.
,
2005
, “
Degradation of Film Cooling Performance on a Turbine Vane Suction Side Due to Surface Roughness
,”
ASME J. Turbomach.
,
128
(
3
), pp.
547
554
.
15.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2016
, “
Effect of In-Hole Roughness on Film Cooling From a Shaped Hole
,”
ASME J. Turbomach.
,
139
(
3
), p.
031004
.
16.
Zamiri
,
A.
,
You
,
S. J.
, and
Chung
,
J. T.
,
2021
, “
Surface Roughness Effects on Film-Cooling Effectiveness in a Fan-Shaped Cooling Hole
,”
Aerosp. Sci. Technol.
,
119
, p.
107082
.
17.
Banko
,
A. J.
,
Benson
,
M. J.
,
Davidson
,
F. T.
,
Zia
,
W.
,
Bordbar
,
A.
,
Boyce
,
C.
,
Veley
,
E. M.
, and
Thole
,
K. A.
,
2023
, “
Effects of Surface Roughness on Three-Dimensional Flow Structure Within Shaped Film Cooling Holes
,”
ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition
,
Boston, MA
,
June 26–30
.
18.
Pu
,
J.
,
Zhang
,
T.
,
Shuai
,
X.
,
Wang
,
J.-H.
,
Chen
,
Y.
, and
Wu
,
W.-L.
,
2023
, “
Experimental Simulations of Effects of Surface Roughness Level of TBC on Overall Effectiveness of Film Cooling Under Typical Vane Environment
,”
J. Therm. Anal. Calorim.
,
148
(
19
), pp.
10251
10267
.
19.
Wilkins
,
P. H.
,
Lynch
,
S. P.
,
Thole
,
K. A.
,
Vincent
,
T.
,
Quach
,
S.
, and
Mongillo
,
D.
,
2022
, “
Effect of a Ceramic Matrix Composite Surface on Film Cooling
,”
ASME J. Turbomach.
,
144
(
8
), p.
081014
.
20.
Wilkins
,
P. H.
,
Lynch
,
S. P.
,
Thole
,
K. A.
,
Vincent
,
T.
,
Quach
,
S.
, and
Kaufman
,
E.
,
2022
, “
Experimental Investigation Into the Effect of a Ceramic Matrix Composite Surface on Film Cooling
,”
ASME J. Turbomach.
,
144
(
12
), p.
121006
.
21.
Wilkins
,
P. H.
,
Lynch
,
S. P.
,
Thole
,
K. A.
,
Quach
,
S.
, and
Vincent
,
T.
,
2021
, “
Experimental Heat Transfer and Boundary Layer Measurements on a Ceramic Matrix Composite Surface
,”
ASME J. Turbomach.
,
143
(
6
), p.
061010
.
22.
Bons
,
J. P.
,
Taylor
,
R. P.
,
McClain
,
S. T.
, and
Rivir
,
R. B.
,
2001
, “
The Many Faces of Turbine Surface Roughness
,”
ASME J. Turbomach.
,
123
(
4
), pp.
739
748
.
23.
Wasistho
,
B.
,
2020
, “
Calcia–Magnesia–Alumina-Silica Particle Deposition Prediction in Gas Turbines Using a Eulerian–Lagrangian Approach in Computational Fluid Dynamics
,”
J. Mater. Res.
,
35
(
17
), pp.
2288
2299
.
24.
Casaday
,
B. P.
,
Ameri
,
A. A.
, and
Bons
,
J. P.
,
2013
, “
Numerical Investigation of Ash Deposition on Nozzle Guide Vane Endwalls
,”
ASME J. Eng. Gas Turbines Power
,
135
(
3
), p.
032001
.
25.
Webb
,
J.
,
Casaday
,
B.
,
Barker
,
B.
,
Bons
,
J. P.
,
Gledhill
,
A. D.
, and
Padture
,
N. P.
,
2012
, “
Coal Ash Deposition on Nozzle Guide Vanes—Part I: Experimental Characteristics of Four Coal Ash Types
,”
ASME J. Turbomach.
,
135
(
2
), p.
021033
.
26.
Qenawy
,
M.
,
Zhou
,
W.
, and
Liu
,
Y.
,
2022
, “
Effects of Crossflow-Fed-Shaped Holes on the Adiabatic Film Cooling Effectiveness
,”
Int. J. Therm. Sci.
,
177
, p.
107578
.
27.
Zhou
,
W.
,
Wang
,
K.
,
Yuan
,
T.
,
Wen
,
X.
,
Peng
,
D.
, and
Liu
,
Y.
,
2022
, “
Spatiotemporal Distributions of Sweeping Jet Film Cooling With a Compact Geometry
,”
Phys. Fluids
,
34
(
2
), p.
025113
.
28.
Zhang
,
T.
,
Huang
,
W.
,
Zhou
,
W.
,
Tian
,
W.
, and
Liu
,
Y.
,
2023
, “
Unveiling Particle Deposition Characteristics on Flat Plate With a Shaped Film Cooling Hole
,”
Int. J. Heat Mass Transfer
,
216
, p.
124584
.
29.
Shadid
,
J. N.
, and
Eckert
,
E. R. G.
,
1991
, “
The Mass Transfer Analogy to Heat Transfer in Fluids With Temperature-Dependent Properties
,”
ASME J. Turbomach.
,
113
(
1
), pp.
27
33
.
30.
Charbonnier
,
D.
,
Ott
,
P.
,
Jonsson
,
M.
,
Cottier
,
F.
, and
Köbke
,
T.
,
2009
, “
Experimental and Numerical Study of the Thermal Performance of a Film Cooled Turbine Platform
,”
ASME Turbo Expo 2009: Power for Land, Sea, and Air
,
Orlando, FL
,
June 8–12
, pp.
1027
1038
.
31.
Johnson
,
B.
, and
Hu
,
H.
,
2016
, “
Measurement Uncertainty Analysis in Determining Adiabatic Film Cooling Effectiveness by Using Pressure Sensitive Paint Technique
,”
ASME J. Turbomach.
,
138
(
12
), p.
121004
.
32.
Zhou
,
W.
, and
Hu
,
H.
,
2017
, “
A Novel Sand-Dune-Inspired Design for Improved Film Cooling Performance
,”
Int. J. Heat Mass Transfer
,
110
, pp.
908
920
.
33.
Huang
,
W.
,
Jiang
,
J.
,
Xu
,
Q.
,
Du
,
Q.
,
Zhou
,
W.
,
Peng
,
D.
, and
Liu
,
Y.
,
2024
, “
A Comprehensive Heat Transfer Investigation for Impingement/Effusion Cooling Under Crossflow Conditions
,”
Int. J. Heat Mass Transfer
,
220
, p.
124950
.
34.
Peng
,
D.
,
Xie
,
F.
,
Liu
,
X.
,
Lin
,
J.
,
Li
,
Y.
,
Zhong
,
J.
,
Zhang
,
Q.
, and
Liu
,
Y.
,
2020
, “
Experimental Study on Hypersonic Shock–Body Interaction Between Bodies in Close Proximity Using Translucent Fast Pressure- and Temperature-Sensitive Paints
,”
Exp. Fluids
,
61
(
5
), p.
120
.
35.
Nikuradse
,
J.
,
1933
, “
Stromungsgesetze in rauhen Rohren
,”
vdi-forschungsheft
,
361
, p.
1
. https://cir.nii.ac.jp/crid/1570009750771980160
36.
Schlichting
,
H.
,
1936
, “
Experimentelle Untersuchungen zum Rauhigkeitsproblem
,”
Ing. Arch.
,
7
(
1
), pp.
1
34
.
37.
Bogard
,
D. G.
,
Schmidt
,
D. L.
, and
Tabbita
,
M.
,
1998
, “
Characterization and Laboratory Simulation of Turbine Airfoil Surface Roughness and Associated Heat Transfer
,”
ASME J. Turbomach.
,
120
(
2
), pp.
337
342
.
38.
Ma
,
D.
,
Harvey
,
T. J.
,
Wellman
,
R. G.
, and
Wood
,
R. J.
,
2019
, “
Characterisation of Rain Erosion at Ex-Service Turbofan Blade Leading Edges
,”
Wear
,
426–427
, pp.
539
551
.
39.
Wildgoose
,
A. J.
, and
Thole
,
K. A.
,
2023
, “
Variability in Additively Manufactured Turbine Cooling Features
,”
J. Glob. Power Propuls. Soc.
,
2023
(
July
), pp.
3
18
.
40.
Sigal
,
A.
, and
Danberg
,
J. E.
,
1990
, “
New Correlation of Roughness Density Effect on the Turbulent Boundary Layer
,”
AIAA J.
,
28
(
3
), pp.
554
556
.
41.
van Rij
,
J. A.
,
Belnap
,
B. J.
, and
Ligrani
,
P. M.
,
2002
, “
Analysis and Experiments on Three-Dimensional, Irregular Surface Roughness
,”
J. Fluid. Eng.
,
124
(
3
), pp.
671
677
.
42.
Womack
,
K. M.
,
Volino
,
R. J.
,
Meneveau
,
C.
, and
Schultz
,
M. P.
,
2022
, “
Turbulent Boundary Layer Flow Over Regularly and Irregularly Arranged Truncated Cone Surfaces
,”
J. Fluid Mech.
,
933
, p.
A38
.
43.
Schmidt
,
D. L.
,
Sen
,
B.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Holes: Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
118
(
4
), pp.
807
813
.
44.
Kunze
,
M.
,
Preibisch
,
S.
,
Vogeler
,
K.
,
Landis
,
K.
, and
Heselhaus
,
A.
,
2008
, “
A New Test Rig for Film Cooling Experiments on Turbine Endwalls
,”
ASME Turbo Expo 2008: Power for Land, Sea, and Air
,
Berlin, Germany
,
June 9–13
, pp.
989
998
.
45.
Wright
,
L. M.
,
McClain
,
S. T.
, and
Clemenson
,
M. D.
,
2011
, “
Effect of Density Ratio on Flat Plate Film Cooling With Shaped Holes Using PSP
,”
ASME J. Turbomach.
,
133
(
4
), p.
041011
.
46.
Kohli
,
A.
, and
Bogard
,
D. G.
,
1997
, “
Adiabatic Effectiveness, Thermal Fields, and Velocity Fields for Film Cooling With Large Angle Injection
,”
ASME J. Turbomach.
,
119
(
2
), pp.
352
358
.
47.
Kaminaris
,
I. K.
,
Balaras
,
E.
,
Schultz
,
M. P.
, and
Volino
,
R. J.
,
2023
, “
Secondary Flows in Turbulent Boundary Layers Developing Over Truncated Cone Surfaces
,”
J. Fluid Mech.
,
961
, p.
A23
.
48.
Schultz
,
M. P.
, and
Flack
,
K. A.
,
2009
, “
Turbulent Boundary Layers on a Systematically Varied Rough Wall
,”
Phys. Fluids
,
21
(
1
), p.
015104
.
49.
Kadivar
,
M.
,
Tormey
,
D.
, and
McGranaghan
,
G.
,
2021
, “
A Review on Turbulent Flow Over Rough Surfaces: Fundamentals and Theories
,”
Int. J. Thermofluids
,
10
, p.
100077
.
50.
Zhang
,
E.
,
Wang
,
Z.
,
Wu
,
W.
,
Wang
,
X.
, and
Liu
,
Q.
,
2023
, “
Secondary Flow and Streamwise Vortices in Three-Dimensional Staggered Wavy-Wall Turbulence
,”
Flow
,
3
, p.
E19
.
51.
Ellis
,
C. D.
, and
Xia
,
H.
,
2022
, “
Impact of Inflow Turbulence on Large-Eddy Simulation of Film Cooling Flows
,”
Int. J. Heat Mass Transfer
,
195
, p.
123172
.
52.
Gul
,
M.
, and
Ganapathisubramani
,
B.
,
2021
, “
Revisiting Rough-Wall Turbulent Boundary Layers Over Sand-Grain Roughness
,”
J. Fluid Mech.
,
911
, p.
A26
.
53.
Mejia-Alvarez
,
R.
, and
Christensen
,
K. T.
,
2013
, “
Wall-Parallel Stereo Particle-Image Velocimetry Measurements in the Roughness Sublayer of Turbulent Flow Overlying Highly Irregular Roughness
,”
Phys. Fluids
,
25
(
11
), p.
115109
.
54.
Barros
,
J. M.
, and
Christensen
,
K. T.
,
2014
, “
Observations of Turbulent Secondary Flows in a Rough-Wall Boundary Layer
,”
J. Fluid Mech.
,
748
, p.
R1
.
55.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p.
021004
.
You do not currently have access to this content.