Abstract

This paper seeks to unpack synergies that exist between minerals during deposition of the heterogeneous AFRL02 mixture in gas turbine engines and demonstrate that the contributions of each mineral cannot be considered independently. In each experiment, one gram of mineral dust (0–10 µm particle diameter distribution) was injected into an 894 K, 57 m/s coolant flow impinging normally on a Hastelloy X plate with a surface temperature of 1033 K, 1144 K, or 1255 K. Capture efficiency measurements, deposit morphology analyses, and X-ray diffraction results are reported. Besides AFRL02, single mineral dusts, dual mineral dusts, and AFRL02-like dust blends lacking in one mineral were tested. The results of the experiments elucidate that the deposition behavior of single minerals indeed cannot explain the composite deposition of heterogeneous mixtures. For example, gypsum had the highest capture efficiency of any single mineral in ARFL02, and yet removing gypsum from AFRL02 counterintuitively raised the capture efficiency of that blend when compared to AFRL02. Quartz was found to erode albite deposits but stick to and build upon dolomite and halite deposits, even though quartz did not deposit significantly as a single mineral. Quartz also chemically reacted with gypsum and dolomite to form wollastonite and diopside, respectively. Finally, we found that the capture efficiency of each blend increased with plate temperature, but not according to the same trend. Results are interpreted through the lens of CaO–MgO–Al2O3–SiO2 eutectic chemistry, but the chemical pathways by which these eutectics come into existence is found to be of equal importance.

References

1.
Andrews
,
G. E.
, and
Hussain
,
C. I.
,
1984
, “
Impingement Cooling of Gas Turbine Components
,”
High Temp. Technol.
,
2
(
2
), pp.
99
106
.
2.
Han
,
B.
, and
Goldstein
,
R. J.
,
2001
, “
Jet-Impingement Heat Transfer in Gas Turbine Systems
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
147
161
.
3.
Scrittore
,
J. J.
,
Thole
,
K. A.
, and
Burd
,
S. W.
,
2006
, “
Investigation of Velocity Profiles for Effusion Cooling of a Combustor Liner
,”
Turbo Expo: Power for Land, Sea, and Air
,
Barcelona, Spain
,
May 8–11
, Vol. 4238, pp.
503
512
.
4.
Whitaker
,
S. M.
,
Lundgreen
,
R. K.
, and
Bons
,
J. P.
,
2017
, “
Effects of Metal Surface Temperature on Deposition-Induced Flow Blockage in a Vane Leading Edge Cooling Geometry
,”
Turbo Expo: Power for Land, Sea, and Air, Vol. 50817
,
Charlotte, NC
,
June 26–30
.
5.
Krämer
,
S.
,
Yang
,
J.
, and
Levi
,
C. G.
,
2006
, “
Thermochemical Interaction of Thermal Barrier Coatings With Molten CaO–MgO–Al2O3–SiO2 (CMAS) Deposits
,”
J. Am. Ceram. Soc.
,
89
(
10
), pp.
3167
3175
.
6.
Mazzocchi
,
M.
,
Hansstein
,
F.
, and
Ragona
,
M.
,
2010
, “
The 2010 Volcanic Ash Cloud and Its Financial Impact on the European Airline Industry
.” CESifo Forum, Vol. 11. No. 2. München: ifo Institut für Wirtschaftsforschung an der Universität München.
7.
Clarkson
,
R. J.
,
Majewicz
,
E. J. E.
, and
Mack
,
P.
,
2016
, “
A re-Evaluation of the 2010 Quantitative Understanding of the Effects Volcanic ash has on gas Turbine Engines
,”
Proc. Inst. Mech. Eng. G: J. Aerosp. Eng.
,
230
(
12
), pp.
2274
2291
.
8.
Crowe
,
E. D.
, and
Bons
,
J. P.
,
2019
, “
Effects of Dust Composition on Particle Deposition in an Effusion Cooling Geometry
,” Paper No. GT 2019-91032, Phoenix, AZ, June 17–21.
9.
Song
,
W.
,
Lavallee
,
Y.
,
Hess
,
K.-U.
,
Kueppers
,
U.
,
Cimarelli
,
C.
, and
Dingwell
,
D. B.
,
2016
, “
Volcanic Ash Melting Under Conditions Relevant to Ash Turbine Interactions
,”
Nat. Commun.
,
7
(
1
), p.
10795
.
10.
Veit
,
U.
, and
Rüssel
,
C.
,
2017
, “
Viscosity and Liquidus Temperature of Quaternary Glasses Close to an Eutectic Composition in the CaO–MgO–Al2O3–SiO2 System
,”
J. Mater. Sci.
,
52
(
13
), pp.
8280
8292
.
11.
Dunn
,
M. G.
,
2012
, “
Operation of Gas Turbine Engines in an Environment Contaminated With Volcanic Ash
,”
ASME J. Turbomach.
,
134
(
5
), p.
051001
.
12.
Poerschke
,
D. L.
,
Jackson
,
R. W.
, and
Levi
,
C. G.
,
2017
, “
Silicate Deposit Degradation of Engineered Coatings in Gas Turbines: Progress Toward Models and Materials Solutions
,”
Annu. Rev. Mater. Res.
,
47
, pp.
297
330
.
13.
Morris
,
J. D.
,
Saood
,
S. S.
,
Chilton
,
S.
, and
Nimmo
,
W.
,
2018
, “
Mechanisms and Mitigation of Agglomeration During Fluidized Bed Combustion of Biomass: A Review
,”
Fuel
,
230
, pp.
452
473
.
14.
Kleinhans
,
U.
,
Wieland
,
C.
,
Frandsen
,
F. J.
, and
Spliethoff
,
H.
,
2018
, “
Ash Formation and Deposition in Coal and Biomass Fired Combustion Systems: Progress and Challenges in the Field of Ash Particle Sticking and Rebound Behavior
,”
Prog. Energy Combust. Sci.
,
68
, pp.
65
168
.
15.
Phelps
,
A. W.
, and
Pfledderer
,
L.
,
2015
, “
Development of a Naturalistic Test Media for Dust Ingestion CMAS Testing of Gas Turbine Engines
in “Thermal Barrier Coatings IV”, U. Schulz, German Aerospace Center; M. Maloney, Pratt & Whitney; R. Darolia, GE Aviation (retired), eds, ECI Symposium Series. http://dc.engconfintl.org/thermal_barrier_iv/29
16.
Vassilev
,
S. V.
,
Baxter
,
D.
, and
Vassileva
,
C. G.
,
2013
, “
An Overview of the Behaviour of Biomass During Combustion: Part I. Phase-Mineral Transformations of Organic and Inorganic Matter
,”
Fuel
,
112
, pp.
391
449
.
17.
Yan
,
Z.
,
Wang
,
Z.
,
Liu
,
H.
,
Tu
,
Y.
,
Yang
,
W.
, and
Zeng
,
H.
,
2015
, “
Decomposition and Solid Reactions of Calcium Sulfate Doped With SiO2, Fe2O3 and Al2O3
,”
J. Anal. Appl. Pyrolysis
,
113
, pp.
491
498
.
18.
Olszak-Humienik
,
M.
, and
Jablonski
,
M.
,
2015
, “
Thermal Behavior of Natural Dolomite
,”
J. Therm. Anal. Calorim.
,
119
(
3
), pp.
2239
2248
.
19.
Weiler
,
C.
,
2008
, “
Generierung Leicht Dispergierbarer Inhalationspulver Mittels Sprühtrocknung,” [“Generation of Easily Dispersible Inhalation Powder Using Spray Drying”]
,”
Doctor of Science, Pharmaceutical Technology Dissertation
,
Department of Chemistry, Pharmacy and Earth Sciences, Johannes Gutenberg University
,
Mainz, Germany
.
20.
Gnanaselvam
,
P.
,
Lo
,
C. H.
,
Han
,
J.
, and
Bons
,
J. P.
,
2021
, “
Turbulent Dispersion and Deposition of Micron-Sized Particles in a Turbulent Pipe Flow at High Temperatures
,”
Proceedings of the AIAA SciTech 2021 (virtual), January
, Paper No. AIAA-2021-0850.
21.
Wolff
,
T.
,
Bowen
,
C.
, and
Bons
,
J. P.
,
2018
, “
The Effect of Particle Size on Deposition in an Effusion Cooling Geometry
,”
Proceedings of the AIAA SciTech 2018
,
Kissimmee, FL
,
Jan. 8–12
, Paper No. AIAA-2018-0391.
22.
Cranmer
,
D.
, and
Uhlmann
,
D. R.
,
1981
, “
Viscosity of Liquid Albite, a Network Material
,”
J. Non-Cryst. Solids
,
45
(
2
), pp.
283
288
.
23.
Babushkin
,
M.
, and
Mchedlov
,
P.
,
1985
, “
Thermodynamics of Silicates
,” 4th ed,
Springer-Verlag
. Translated by Frenkel, B.N., and Terettyevs, V.A., New York, pp.
95
102
.
24.
Elms
,
J.
,
Pawley
,
A.
,
Bojdo
,
N.
,
Jones
,
M.
, and
Clarkson
,
R.
,
2020
, “
The Formation of High Temperature Minerals from an Evaporite-Rich Dust in Gas Turbine Engine Ingestion Tests
,” Paper No. GT2020-14236.
25.
Wood
,
C. A.
,
Slater
,
S. L.
, and
Zonneveldt
,
M.
,
2017
, “
Characterisation of Dirt, Dust and Volcanic Ash: A Study on the Potential for Gas Turbine Engine Degradation
,” DST-Group-TR-3367.
26.
Deer
,
W.
,
Howie
,
R.
, and
Zussman
,
J.
,
1978
,
Rock-Forming Minerals Volume 2A. Single-[Q10]Chain Silicates
, 2nd ed.,
Longman Group Limited, Halstad Press, John Wiley & Sons, Geological Society of London
,
New York
, pp.
199
293
.
27.
Hurskainen
,
M.
, and
Vainikka
,
P.
,
2016
,
Fuel Flexible Energy Generation
,
Woodhead Publishing
,
Sawston, UK
, pp.
177
199
.
28.
Khadilkar
,
A. B.
,
2016
, “
Development of a Fluidized bed Agglomeration Modeling Methodology to Include Particle-Level Heterogeneities in ash Chemistry and Granular Physics
,”
Doctorate dissertation
,
The Pennsylvania State University
,
State College, PA
.
29.
Krisak
,
M. B.
,
Bentley
,
B. I.
, and
Phelps
,
A. W.
,
2017
, “
Review of Calcium Sulfate as an Alternative Cause of Hot Corrosion
,”
J. Propul. Power
,
33
(
3
), pp.
697
703
.
You do not currently have access to this content.