Abstract

A diagram is described which demonstrates important aspects of the exit velocity triangle of a radial compressor impeller with no inlet swirl. Although this diagram is based on work dating back to 1941, it is not widely known in the radial compressor community. It aids the selection of the exit velocity triangle for impellers and gives significant insight into impeller-diffuser matching. It can be used to analyze performance maps from both experimental and computational fluid dynamics (CFD) studies. Important aspects made clear in the diagram are as follows: The degree of reaction and the de Haller number of the impeller are both determined primarily by the work coefficient, and both decrease as the work coefficient increases; the degree of reaction is also affected by the exit flow coefficient, and for typical backswept impeller designs, it remains nearly constant at off-design flow conditions; the inlet and exit velocity triangles can be shown in the same diagram to visualize the deceleration of the relative velocity along the casing streamline and of the meridional velocity across an impeller, together with the acceleration of the relative flow on the hub streamline; the slope of the impeller gas path work coefficient versus exit flow coefficient at off-design conditions can be added to the diagram and this provides a new approach to estimate the mean slip factor from a measured or calculated compressor performance map; the diagram can be used as a useful template to compare different impeller design styles and to explain why different impellers are needed for use with vaned and vaneless diffusers; and the absolute velocity at the diffuser inlet of a backswept impeller increases with a decrease in flowrate along the operating line, which is an important aid to compressor stability.

References

1.
Casey
,
M.
, and
Robinson
,
C.
,
2021
,
Radial Flow Turbocompressors
,
Cambridge University Press
,
Cambridge
.
2.
Mehldahl
,
A.
,
1941
, “
Die Trennung der Rad- und Diffusorverluste bei Zentrifugalgebläsen
,”
Brown Boveri Mitteilung
,
28
(
8–9
), pp.
203
206
.
3.
Rusch
,
D.
, and
Casey
,
M.
,
2013
, “
The Design Space Boundaries for High Flow Capacity Centrifugal Compressors
,”
ASME J. Turbomach.
,
135
(
3
), p.
031035
.
4.
Ferguson
,
T. B.
,
1963
,
The Centrifugal Compressor Stage
,
Butterworths
,
London
.
5.
Stepanoff
,
A. J.
,
1957
,
Centrifugal and Axial Flow Pumps
, 2nd ed.,
John Wiley and Sons Inc
,
New York
.
6.
Lüdtke
,
K. H.
,
2004
,
Process Centrifugal Compressors
,
Springer
,
Berlin
.
7.
Horlock
,
J. H.
,
1958
,
Axial Flow Compressors
,
Butterworths, Reprinted With Additional Material in 1973 by Krieger Publishing Co
,
London
.
8.
Horlock
,
J. H.
,
1966
,
Axial Flow Turbines
,
Butterworths
,
London
.
9.
Smith
,
S. F.
,
1965
, “
A Simple Correlation of Turbine Efficiency
,”
J. R. Aero. Soc.
,
69
(
655
), pp.
467
470
.
10.
Wiesner
,
F. J.
,
1960
, “
Practical Stage Performance Correlations for Centrifugal Compressors
,”
ASME Paper 60-HYD-17, Gas Turbine Power and Hydraulic Conference
,
Houston, TX
,
March
, pp.
1
12
.
11.
Casey
,
M.
,
1994
, “
Computational Methods for Preliminary Design and Geometry Definition in Turbomachinery
,” AGARD-LS-195, AGARD Lecture Series on Turbomachinery Design Using CFD, NASA-Lewis.
12.
Ribi
,
B.
,
1996
,
Flow in Radial Turbomachines, Lecture Series 1996-01
,
von Karman Institute
,
Brussels
.
13.
Lou
,
F.
, and
Key
,
N. L.
,
2021
, “
On Choosing the Optimal Impeller Exit Velocity Triangles in Preliminary Design
,”
ASME Turbo Expo 2021
,
San Diego, CA
,
June 7–11
,
ASME
, p.
V02CT34A017
.
14.
Van den Braembussche
,
R.
,
2019
,
Design and Analysis of Centrifugal Compressors
,
ASME Press, Wiley
,
New York
.
15.
Casey
,
M. V.
,
Dalbert
,
P.
, and
Schurter
,
E.
,
1990
, “
Radial Compressor Stages for Low Flow Coefficients
,”
Paper C403/004, IMechE International Conference, Machinery for the Oil and Gas Industries
,
Amsterdam
, pp.
117
125
.
16.
Lettieri
,
C.
,
Baltadjiev
,
N.
,
Casey
,
M.
, and
Spakovszky
,
Z.
,
2014
, “
Low-Flow-Coefficient Centrifugal Compressor Design for Supercritical CO2
,”
ASME J. Turbomach.
,
136
(
8
), p.
081008
.
17.
Casey
,
M.
, and
Marty
,
F.
,
1985
, “
Centrifugal Compressors—Performance at Design and Off-Design
,”
Proceedings of the Institute of Refrigeration
,
London
,
1985–1986
, pp.
71
82
.
18.
Dalbert
,
P.
,
Casey
,
M.
, and
Schurter
,
E.
,
1988
, “
Development, Testing and Performance Prediction of Radial Stages for Multi-Stage Industrial Compressors
,”
ASME J. Turbomach.
,
110
(
3
), pp.
283
292
.
19.
Casey
,
M.
, and
Robinson
,
C. J.
,
2013
, “
A Method to Estimate the Performance Map of a Centrifugal Compressor Stage
,”
ASME J. Turbomach
,
135
(
2
), p.
021034
.
20.
Rodgers
,
C.
,
2000
, “
Effects of Blade Number on the Efficiency of Centrifugal Compressor Impellers
,”
ASME Turbo Expo 2000
,
Munich, Germany
,
May 8–11
, pp.
1
8
.
21.
Eckert
,
B.
, and
Schnell
,
E.
,
1961
,
Axial- und Radialkompressoren
,
Springer-Verlag
,
Berlin
.
22.
Aldi
,
N.
,
Casari
,
N.
,
Pinelli
,
M.
, and
Suman
,
A.
,
2018
, “
A Statistical Survey on the Actual State-of-the-Art Performance of Radial Flow Fans Based on Market Data
,”
Proceedings of FAN 2018 Conference
,
Darmstadt, Germany
, pp.
1
11
.
23.
Del Greco
,
A. S.
,
Biagi
,
F. R.
,
Sassanelli
,
G.
, and
Michelassi
,
V.
,
2007
, “
A New Slip Factor Correlation for Centrifugal Impellers in a Wide Range of Flow Coefficients and Peripheral Mach Numbers
,”
ASME Turbo Expo
,
Montreal, Canada
,
May 14–17
, ASME Paper GT2007-27199.
24.
Sirakov
,
B.
, and
Casey
,
M. V.
,
2012
, “
Evaluation of Heat Transfer Effects on Turbocharger Performance
,”
ASME J. Turbomach.
,
135
(
2
), p.
021011
.
25.
Hazby
,
H. R.
,
Casey
,
M.
, and
Březina
,
L.
,
2019
, “
Effect of Leakage Flows on the Performance of a Family of Inline Centrifugal Compressors
,”
ASME J. Turbomach.
,
141
(
9
), p.
091006
.
26.
Harley
,
P.
,
Spence
,
S.
,
Filsinger
,
D.
,
Dietrich
,
M.
, and
Early
,
J.
,
2014
, “
Meanline Modelling of Inlet Recirculation in Automotive Turbocharger Centrifugal Compressors
,”
ASME J. Turbomach.
,
137
(
1
), p.
011007
.
27.
Eckardt
,
D.
,
Trülzsch
,
K. J.
, and
Weimann
,
W.
,
1977
,
Vergleichende Strömungsuntersuchungen an den drei Radial-Verdichter Laufrädern mit konventionellen Messverfahren, FVV Radialverdichter Vorhaben No. 182, Heft 237, FVV Frankfurt
.
28.
Stodola
,
A.
,
1905
,
Steam Turbines: With an Appendix on Gas Turbines and the Future of Heat Engines
,
D. Van Nostrand Co.
,
New York
.
29.
Qiu
,
X.
,
Japikse
,
D.
,
Zhao
,
J.
, and
Anderson
,
M. R.
,
2011
, “
Analysis and Validation of a Unified Slip Factor Model for Impellers at Design and Off-Design Conditions
,”
ASME J. Turbomach.
,
133
(
4
), p.
041018
.
30.
Lewis
,
R. I.
,
1996
,
Turbomachinery Performance Analysis
,
John Wiley & Sons
,
New York
.
31.
Busemann
,
A.
,
1928
, “
Das Forderhohenverhaltniss Radialer Kreiselpumen mit Logarithmischspiraligen Schaufeln
,”
Z. Angew. Math. Mech.
,
8
(
5
), pp.
372
384
.
You do not currently have access to this content.