Abstract

Aero-engine combustors burn a lean and premixed blend releasing vorticity and temperature perturbations. Interacting with the first turbine stage, these disturbances impact the cascade aerodynamics, add criticality to the blade cooling, and are sources of noise. The first of these issues is addressed in this paper, focusing on off-design turbine conditions, as experienced by aero-engines in their duty. This paper, Part II of a two-fold contribution, analyses the effect of the stage loading obtained by changing the rpm (three different values) at the same expansion ratio of 1.4, representative of subsonic flow conditions. Engine-representative disturbances are generated by a combustor simulator able to produce a swirling entropy wave. Two injection positions and four injection patterns are considered. Experimental measurements are carried out through the stage, measuring the injected disturbance and the aerothermal flow field downstream of the stator and the rotor. Results show that the swirl profile mostly impacts the stage aerodynamics. The different work extraction and the interaction with secondary flow structures change the entropy wave transport, diffusion, and decay through the rotor. Furthermore, the increased angle of the incidence caused by the injected disturbance can make the blade stall under the most loaded operating condition.

References

1.
Gundy-Burlet
,
K. L.
, and
Dorney
,
D. J.
,
1997
, “
Influence of 3D Hot Streaks on Turbine Heat Transfer
,”
Proceedings of the ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
,
ASME
,
Orlando, FL
,
2–5 June, 1997
, p.
001T03A075
.
2.
Jacobi
,
S.
,
Mazzoni
,
C.
,
Rosic
,
B.
, and
Chana
,
K.
,
2017
, “
Investigation of Unsteady Flow Phenomena in First Vane Caused by Combustor Flow With Swirl
,”
ASME J. Turbomach.
,
139
(
4
), p.
041006
.
3.
Morgans
,
A. S.
, and
Duran
,
I.
,
2016
, “
Entropy Noise: A Review of Theory, Progress and Challenges
,”
Int. J. Spray Combust. Dyn.
,
8
(
4
), pp.
285
298
.
4.
Dowling
,
A. P.
, and
Mahmoudi
,
Y.
,
2015
, “
Combustion Noise
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
65
100
.
5.
Hawthorne
,
W. R.
,
1951
, “
Secondary Circulation in Fluid Flow
,”
Proc. R. Soc. Ser. A
,
206
(
1086
), pp.
374
387
.
6.
Butler
,
T. L.
,
Sharma
,
O. P.
,
Joslyn
,
H. D.
, and
Dring
,
R. P.
,
1989
, “
Redistribution of an Inlet Temperature Distortion in an Axial Flow Turbine Stage
,”
ASME J. Propul. Power
,
5
(
1
), pp.
64
71
.
7.
Beard
,
P. F.
,
Smith
,
A.
, and
Povey
,
T.
,
2012
, “
Impact of Severe Temperature Distortion on Turbine Efficiency
,”
ASME J. Turbomach.
,
135
(
1
), p.
011018
.
8.
Gaetani
,
P.
, and
Persico
,
G.
,
2017
, “
Hot Streak Evolution in an Axial HP Turbine Stage
,”
Int. J. Turbomach. Propul. Power
,
2
(
2
), p.
6
.
9.
Gaetani
,
P.
,
Persico
,
G.
,
Pinelli
,
L.
,
Marconcini
,
M.
, and
Pacciani
,
R.
,
2020
, “
Computational and Experimental Study of Hot Streak Transport Within the First Stage of a Gas Turbine
,”
ASME J. Turbomach.
,
142
(
8
), p.
081002
.
10.
Dorney
,
D. J.
, and
Sondak
,
D. L.
,
2000
, “
Effects of Tip Clearance on Hot Streak Migration in a High-Subsonic Single Stage Turbine
,”
ASME J. Turbomach.
,
122
(
4
), pp.
613
620
.
11.
Beard
,
P. F.
,
Smith
,
A. D.
, and
Povey
,
T.
,
2013
, “
Effect of Combustor Swirl on Transonic High Pressure Turbine Efficiency
,”
ASME J. Turbomach.
,
136
(
1
), p.
011002
.
12.
Qureshi
,
I.
,
Beretta
,
A.
,
Chana
,
K.
, and
Povey
,
T.
,
2012
, “
Effect of Aggressive Inlet Swirl on Heat Transfer and Aerodynamics in an Unshrouded Transonic HP Turbine
,”
ASME J. Turbomach.
,
134
(
6
), p.
061023
.
13.
Andreini
,
A.
,
Bacci
,
T.
,
Insinna
,
M.
,
Mazzei
,
L.
, and
Salvadori
,
S.
,
2016
, “
Hybrid RANS-LES Modeling of the Aerothermal Field in an Annular Hot Streak Generator for the Study of Combustor–Turbine Interaction
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
021508
.
14.
Werschnik
,
H.
,
Schneider
,
M.
,
Herrmann
,
J.
,
Ivanov
,
D.
,
Schiffer
,
H. P.
, and
Lyko
,
C.
,
2017
, “
The Influence of Combustor Swirl on Pressure Losses and the Propagation of Coolant Flows at the Large Scale Turbine Rig (LSTR): Experimental and Numerical Investigation
,”
Int. J. Turbomach. Propul. Power
,
2
(
3
), p.
12
.
15.
Khanal
,
B.
,
He
,
L.
,
Northall
,
J.
, and
Adami
,
P.
,
2013
, “
Analysis of Radial Migration of Hot-Streak in Swirling Flow Through High-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
135
(
4
), p.
041005
.
16.
Bacci
,
T.
,
Becchi
,
R.
,
Picchi
,
A.
, and
Facchini
,
B.
,
2019
, “
Adiabatic Effectiveness on High-Pressure Turbine Nozzle Guide Vanes Under Realistic Swirling Conditions
,”
ASME J. Turbomach.
,
141
(
1
), p.
011009
.
17.
Rahim
,
A.
, and
He
,
L.
,
2015
, “
Rotor Blade Heat Transfer of High Pressure Turbine Stage Under Inlet Hot-Streak and Swirl
,”
ASME J. Eng. Gas Turbines Power
,
137
(
6
), p.
062601
.
18.
Adams
,
M. G.
,
Beard
,
P. F.
,
Stokes
,
M. R.
,
Wallin
,
F.
,
Chana
,
K. S.
, and
Povey
,
T.
,
2021
, “
Effects of a Combined Hot-Streak and Swirl Profile on Cooled 1.5-Stage Turbine Aerodynamics: An Experimental and Computational Study
,”
ASME J. Turbomach.
,
143
(
2
), p.
021011
.
19.
Adams
,
M. G.
,
Povey
,
T.
,
Hall
,
B. F.
,
Cardwell
,
D. N.
,
Chana
,
K. S.
, and
Beard
,
P. F.
,
2019
, “
Commissioning of a Combined Hot-Streak and Swirl Profile Generator in a Transonic Turbine Test Facility
,”
ASME J. Eng. Gas Turbines Power
,
142
(
3
), p.
031008
.
20.
Notaristefano
,
A.
, and
Gaetani
,
P.
,
2020
, “
Design and Commissioning of a Combustor Simulator Combining Swirl and Entropy Wave Generation
,”
Int. J. Turbomach. Propul. Power
,
5
(
4
), p.
27
.
21.
Giusti
,
A.
,
Worth
,
N. A.
,
Mastorakos
,
E.
, and
Dowling
,
A. P.
,
2017
, “
Experimental and Numerical Investigation Into the Propagation of Entropy Waves
,”
AIAA J.
,
55
(
2
), pp.
446
458
.
22.
Christodoulou
,
L.
,
Karimi
,
N.
,
Cammarano
,
A.
,
Paul
,
M.
, and
Navarro-Martinez
,
S.
,
2020
, “
State Prediction of an Entropy Wave Advecting Through a Turbulent Channel Flow
,”
J. Fluid Mech.
,
882
, p.
A8
.
23.
Bake
,
F.
,
Richter
,
C.
,
Mühlbauer
,
B.
,
Kings
,
N.
,
Röhle
,
I.
,
Thiele
,
F.
, and
Noll
,
B.
,
2009
, “
The Entropy Wave Generator (EWG): A Reference Case on Entropy Noise
,”
J. Sound Vib.
,
326
(
3–5
), pp.
574
598
.
24.
Notaristefano
,
A.
, and
Gaetani
,
P.
,
2021
, “
Transport of Swirling Entropy Waves Through an Axial Turbine Stator
,”
Int. J. Turbomach. Propul. Power
,
6
(
4
), p.
45
.
25.
Notaristefano
,
A.
, and
Gaetani
,
P.
,
2022
, “
Impact of Swirling Entropy Waves on a High Pressure Turbine
,”
ASME J. Turbomach.
,
144
(
3
), p.
031010
.
26.
Notaristefano
,
A.
, and
Gaetani
,
P.
,
2022
, “
The Role of Turbine Operating Conditions on Combustor–Turbine Interaction—Part 1: Change in Expansion Ratio
,”
ASME J. Turbomach.
27.
Gaetani
,
P.
,
Persico
,
G.
, and
Spinelli
,
A.
,
2017
, “
Coupled Effect of Expansion Ratio and Blade Loading on the Aerodynamics of a High-Pressure Gas Turbine
,”
Appl. Sci.
,
7
(
3
), p.
259
.
28.
Perdichizzi
,
A.
, and
Dossena
,
V.
,
1993
, “
Incidence Angle and Pitch–Chord Effects on Secondary Flows Downstream of a Turbine Cascade
,”
ASME J. Turbomach.
,
115
(
3
), pp.
383
391
.
29.
Jouini
,
D. B. M.
,
Sjolander
,
S. A.
, and
Moustapha
,
S. H.
,
2001
, “
Aerodynamic Performance of a Transonic Turbine Cascade at Off Design Conditions
,”
ASME J. Turbomach.
,
123
(
3
), pp.
510
518
.
30.
Craig
,
H. R. M.
, and
Cox
,
H. J. A.
,
1970
, “
Performance Estimation of Axial Flow Turbines
,”
Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
407
424
.
31.
Pinelli
,
L.
,
Marconcini
,
M.
,
Pacciani
,
R.
,
Notaristefano
,
A.
, and
Gaetani
,
P.
,
2022
, “
The Effects of Swirling Flows in Entropy Wave Convection Through High Pressure Turbine Stage
,”
ASME J. Turbomach.
32.
Notaristefano
,
A.
,
Gaetani
,
P.
,
Dossena
,
V.
, and
Fusetti
,
A.
,
2021
, “
Uncertainty Evaluation on Multi-Hole Aerodynamic Pressure Probes
,”
ASME J. Turbomach.
,
143
(
9
), p.
091001
.
33.
Persico
,
G.
,
Gaetani
,
P.
, and
Guardone
,
A.
,
2005
, “
Design and Analysis of a New Concept Fast-Response Pressure Probes
,”
Meas. Sci. Technol.
,
16
(
9
), pp.
1741
1750
.
34.
Prasad
,
D.
, and
Hendricks
,
G. J.
,
2000
, “
A Numerical Study of Secondary Flow in Axial Turbines With Application to Radial Transport of Hot Streaks
,”
ASME J. Turbomach.
,
122
(
4
), pp.
667
673
.
You do not currently have access to this content.