Abstract

Aeroengine lean-burn combustors release vorticity and temperature perturbations that, interacting with the first turbine stage, impact the stage aerodynamics, the blade cooling, and noise production. The first of these issues is addressed in this paper that is Part I of a two-fold contribution. A detailed experimental analysis is carried out to study the impact on the combustor–turbine interaction of the off-design conditions experienced by aero-engines in their duty. Engine-representative disturbances are generated by a combustor simulator able to produce swirling entropy waves. Two injection positions and four injection cases are studied. Experimental measurements are carried out at three traverses: upstream of the stator, at the interstage, and downstream of the rotor. This paper analyses the effect of the stage expansion ratio: two values are studied, namely 1.4 and 1.76, representative of subsonic and transonic flow conditions. They are chosen imposing similar velocity triangles at the rotor inlet. Results show that the swirl profile considerably impacts the stage aerodynamics. The aerothermal flow field downstream of the stator is modified significantly by the combustor disturbances. Conversely, downstream of the rotor, the differences in aerodynamics lessen. However, the entropy wave persists at the stage outlet and its transport depends on both the operating point and the injection position.

References

1.
Gundy-Burlet
,
K. L.
, and
Dorney
,
D. J.
,
1997
, “
Influence of 3D Hot Streaks on Turbine Heat Transfer
,”
Proceedings of the ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
,
Orlando, FL
,
June 2–5
,
ASME
, p.
V001T03A075
.
2.
Jacobi
,
S.
,
Mazzoni
,
C.
,
Rosic
,
B.
, and
Chana
,
K.
,
2017
, “
Investigation of Unsteady Flow Phenomena in First Vane Caused by Combustor Flow With Swirl
,”
ASME J. Turbomach.
,
139
(
4
), p.
041006
.
3.
Morgans
,
A. S.
, and
Duran
,
I.
,
2016
, “
Entropy Noise: A Review of Theory, Progress and Challenges
,”
Int. J. Spray Combust. Dyn.
,
8
(
4
), pp.
285
298
.
4.
Dowling
,
A. P.
, and
Mahmoudi
,
Y.
,
2015
, “
Combustion Noise
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
65
100
.
5.
Hawthorne
,
W. R.
,
1951
, “
Secondary Circulation in Fluid Flow
,”
Proc. R. Soc. A
,
206
(
1086
), pp.
374
387
.
6.
Butler
,
T. L.
,
Sharma
,
O. P.
,
Joslyn
,
H. D.
, and
Dring
,
R. P.
,
1989
, “
Redistribution of an Inlet Temperature Distortion in an Axial Flow Turbine Stage
,”
J. Propul. Power
,
5
(
1
), pp.
64
71
.
7.
Beard
,
P. F.
,
Smith
,
A.
, and
Povey
,
T.
,
2012
, “
Impact of Severe Temperature Distortion on Turbine Efficiency
,”
ASME J. Turbomach.
,
135
(
1), p.
011018
.
8.
Gaetani
,
P.
, and
Persico
,
G.
,
2017
, “
Hot Streak Evolution in an Axial HP Turbine Stage
,”
Int. J. Turbomach. Propuls. Power
,
2
(
2
), p.
6
.
9.
Gaetani
,
P.
,
Persico
,
G.
,
Pinelli
,
L.
,
Marconcini
,
M.
, and
Pacciani
,
R.
,
2020
, “
Computational and Experimental Study of Hot Streak Transport Within the First Stage of a Gas Turbine
,”
ASME J. Turbomach.
,
142
(
8
), p.
081002
.
10.
Dorney
,
D. J.
, and
Sondak
,
D. L.
,
2000
, “
Effects of Tip Clearance on Hot Streak Migration in a High-Subsonic Single Stage Turbine
,”
ASME J. Turbomach.
,
122
(
4
), pp.
613
620
.
11.
Beard
,
P. F.
,
Smith
,
A. D.
, and
Povey
,
T.
,
2013
, “
Effect of Combustor Swirl on Transonic High Pressure Turbine Efficiency
,”
ASME J. Turbomach.
,
136
(
1), p.
011002
.
12.
Qureshi
,
I.
,
Beretta
,
A.
,
Chana
,
K.
, and
Povey
,
T.
,
2012
, “
Effect of Aggressive Inlet Swirl on Heat Transfer and Aerodynamics in an Unshrouded Transonic HP Turbine
,”
ASME J. Turbomach.
,
134
(
6), p.
061023
.
13.
Andreini
,
A.
,
Bacci
,
T.
,
Insinna
,
M.
,
Mazzei
,
L.
, and
Salvadori
,
S.
,
2016
, “
Hybrid RANS-LES Modeling of the Aerothermal Field in an Annular Hot Streak Generator for the Study of Combustor–Turbine Interaction
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2), p.
021508
.
14.
Werschnik
,
H.
,
Schneider
,
M.
,
Herrmann
,
J.
,
Ivanov
,
D.
,
Schiffer
,
H. P.
, and
Lyko
,
C.
,
2017
, “
The Influence of Combustor Swirl on Pressure Losses and the Propagation of Coolant Flows at the Large Scale Turbine Rig (LSTR): Experimental and Numerical Investigation
,”
Int. J. Turbomach. Propuls. Power
,
2
(
3
), p.
12
.
15.
Khanal
,
B.
,
He
,
L.
,
Northall
,
J.
, and
Adami
,
P.
,
2013
, “
Analysis of Radial Migration of Hot-Streak in Swirling Flow Through High-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
135
(
4), p.
041005
.
16.
Bacci
,
T.
,
Becchi
,
R.
,
Picchi
,
A.
, and
Facchini
,
B.
,
2019
, “
Adiabatic Effectiveness on High-Pressure Turbine Nozzle Guide Vanes Under Realistic Swirling Conditions
,”
ASME J. Turbomach.
,
141
(
1
), p.
011009
.
17.
Rahim
,
A.
, and
He
,
L.
,
2015
, “
Rotor Blade Heat Transfer of High Pressure Turbine Stage Under Inlet Hot-Streak and Swirl
,”
ASME J. Eng. Gas Turbines Power
,
137
(
6), p.
062601
.
18.
Adams
,
M. G.
,
Beard
,
P. F.
,
Stokes
,
M. R.
,
Wallin
,
F.
,
Chana
,
K. S.
, and
Povey
,
T.
,
2021
, “
Effects of a Combined Hot-Streak and Swirl Profile on Cooled 1.5-Stage Turbine Aerodynamics: An Experimental and Computational Study
,”
ASME J. Turbomach.
,
143
(
2), p.
021011
.
19.
Adams
,
M. G.
,
Povey
,
T.
,
Hall
,
B. F.
,
Cardwell
,
D. N.
,
Chana
,
K. S.
, and
Beard
,
P. F.
,
2019
, “
Commissioning of a Combined Hot-Streak and Swirl Profile Generator in a Transonic Turbine Test Facility
,”
ASME J. Eng. Gas Turbines Power
,
142
(
3), p.
031008
.
20.
Notaristefano
,
A.
, and
Gaetani
,
P.
,
2020
, “
Design and Commissioning of a Combustor Simulator Combining Swirl and Entropy Wave Generation
,”
Int. J. Turbomach. Propuls. Power
,
5
(
4
), p.
27
.
21.
Giusti
,
A.
,
Worth
,
N. A.
,
Mastorakos
,
E.
, and
Dowling
,
A. P.
,
2017
, “
Experimental and Numerical Investigation Into the Propagation of Entropy Waves
,”
AIAA J.
,
55
(
2
), pp.
446
458
.
22.
Morgans
,
A. S.
,
Goh
,
C. S.
, and
Dahan
,
J. A.
,
2013
, “
The Dissipation and Shear Dispersion of Entropy Waves in Combustor Thermoacoustics
,”
J. Fluid Mech.
,
733
, p.
R2
.
23.
Bake
,
F.
,
Richter
,
C.
,
Mühlbauer
,
B.
,
Kings
,
N.
,
Röhle
,
I.
,
Thiele
,
F.
, and
Noll
,
B.
,
2009
, “
The Entropy Wave Generator (EWG): A Reference Case on Entropy Noise
,”
J. Sound Vib.
,
326
(
3–5
), pp.
574
598
.
24.
Notaristefano
,
A.
, and
Gaetani
,
P.
,
2021
, “
Transport of Swirling Entropy Waves Through an Axial Turbine Stator
,”
Int. J. Turbomach. Propuls. Power
,
6
(
4
), p.
45
.
25.
Notaristefano
,
A.
, and
Gaetani
,
P.
,
2022
, “
Impact of Swirling Entropy Waves on a High Pressure Turbine
,”
ASME J. Turbomach.
,
144
(
3
), p.
031010
.
26.
Notaristefano
,
A.
, and
Gaetani
,
P.
,
2022
, “
The Role of Turbine Operating Conditions on Combustor-Turbine Interaction—Part 2: Loading Effects
,”
ASME J. Turbomach.
27.
Gaetani
,
P.
,
Persico
,
G.
, and
Spinelli
,
A.
,
2017
, “
Coupled Effect of Expansion Ratio and Blade Loading on the Aerodynamics of a High-Pressure Gas Turbine
,”
Appl. Sci.
,
7
(
3
), p.
259
.
28.
Perdichizzi
,
A.
,
1990
, “
Mach Number Effects on Secondary Flow Development Downstream of a Turbine Cascade
,”
ASME J. Turbomach.
,
112
(
4
), pp.
643
651
.
29.
Kacker
,
S. C.
, and
Okapuu
,
U.
,
1982
, “
A Mean Line Prediction Method for Axial Flow Turbine Efficiency
,”
ASME J. Eng. Gas Turbines Power
,
104
(
1
), pp.
111
119
.
30.
Craig
,
H. R. M.
, and
Cox
,
H. J. A.
,
1970
, “
Performance Estimation of Axial Flow Turbines
,”
Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
407
424
.
31.
Pinelli
,
L.
,
Marconcini
,
M.
,
Pacciani
,
R.
,
Notaristefano
,
A.
, and
Gaetani
,
P.
,
2022
, “
The Effects of Swirling Flows in Entropy Wave Convection Through High Pressure Turbine Stage
,”
ASME J. Turbomach.
32.
Notaristefano
,
A.
,
Gaetani
,
P.
,
Dossena
,
V.
, and
Fusetti
,
A.
,
2021
, “
Uncertainty Evaluation on Multi-Hole Aerodynamic Pressure Probes
,”
ASME J. Turbomach.
,
143
(
9), p.
091001
.
33.
Leyko
,
M.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2009
, “
Comparison of Direct and Indirect Combustion Noise Mechanisms in a Model Combustor
,”
AIAA J.
,
47
(
11
), pp.
2709
2716
.
34.
Ainley
,
D. G.
, and
Mathieson
,
G. C. R.
,
1951
, “
A Method of Performance Estimation for Axial Flow Turbines
,”
ARC R&M
, p.
2974
.
35.
Moustapha
,
S. H.
,
Kacker
,
S. C.
, and
Tremblay
,
B.
,
1990
, “
An Improved Incidence Losses Prediction Method for Turbine Airfoils
,”
ASME J. Turbomach.
,
112
(
2
), pp.
267
276
.
You do not currently have access to this content.