Abstract

Droplet-laden flows play a significant role in the development of turbomachinery. For example, fine water droplets are injected into the flow path of axial compressors to increase the power output of gas turbines by making use of evaporation cooling, often referred to as wet compression. Another example is the ingestion of rain droplets in aircraft engines. Therefore, thermodynamic and aerodynamic measurements of air and liquid are indispensable to better predict the following behavior of the droplets in the gas flow. This article presents a new PDA measurement setup for a droplet-laden four-stage axial compressor to analyze the droplet behavior in swirled flows. To reduce optical disturbances of the laser beam path, liquid films at the casing are suppressed by a boundary layer air injection. Supplementary investigations with this treatment show a negligible influence on the compressor behavior. To minimize refraction effects of the laser beams at the casing window, the laser device with the optical probes can be translated and rotated, thus having 4 degrees-of-freedom. Furthermore, the collected droplet data are compared with a mathematical description of velocity slip in superimposed air flows. For the first time, it can be shown experimentally that droplets smaller than 10 μm attain the velocity of air one stage after injection. For larger droplets, however, deviations from the air Mach number of up to 0.05 remain. In addition, detached liquid films behind the trailing edge of the stator blades with low velocities can be clearly detected.

References

1.
Kleinschmidt
,
R. V.
,
1947
, “
Value of Wet Compression in Gas Turbine Cycles
,”
Mech. Eng.
,
69
(
2
), pp.
115
116
.
2.
Utamura
,
M.
,
1999
, “
Effects of Intensive Evaporative Cooling on Performance Characteristics of Land-Based Gas Turbine
,”
Proceedings of the 1999 International Joint Power Generation Coneference
,
San Francisco, CA
,
July 1
, Vol.
34
. pp.
321
328
.
3.
White
,
A. J.
, and
Meacock
,
A. J.
,
2004
, “
An Evaluation of the Effects of Water Injection on Compressor Performance
,”
ASME J. Eng. Gas Turbines Power.
,
126
(
4
), pp.
748
754
.
4.
Bhargava
,
R. K.
,
Meher-Homji
,
C. B.
,
Chaker
,
M. A.
,
Bianchi
,
M.
,
Melino
,
F.
,
Peretto
,
A.
, and
Ingistov
,
S.
,
2007
, “
Gas Turbine Fogging Technology: A State-of-the-Art Review—Part I: Inlet Evaporative Fogging—Analytical and Experimental Aspects
,”
ASME J. Eng. Gas Turbines Power.
,
129
(
2
), pp.
443
453
.
5.
Doerr
,
T.
,
Schuster
,
S.
, and
Brillert
,
D.
,
2021
, “
Evaluation of Performance Gain by Interstage Injection in a Four-Stage Axial Compressor
,”
Proceedings of ASME Turbo Expo 2021
,
Virtual, Online
,
July 7–11
, p.
9
.
6.
Ingistov
,
S.
,
2002
, “
Interstage Injection Into Axial Compressor, Gas Turbine Model 7EA: Part 2
,”
Proceedings of ASME Turbo Expo 2002
,
Amsterdam, The Netherlands
,
June 3–6
,
ASMEDC
, pp.
497
505
.
7.
Roumeliotis
,
I.
, and
Mathioudakis
,
K.
,
2007
, “
Water Injection Effects on Compressor Stage Operation
,”
ASME J. Eng. Gas Turbines Power.
,
129
(
3
), pp.
778
784
.
8.
Williams
,
J.
, and
Young
,
J. B.
,
2007
, “
Movement of Deposited Water on Turbomachinery Rotor Blade Surfaces
,”
ASME J. Turbomach.
,
129
(
2
), pp.
394
403
.
9.
Nikolaidis
,
T.
,
Pilidis
,
P.
,
Teixeira
,
J. A.
, and
Pachidis
,
V.
,
2008
, “
Water Film Formation on an Axial Flow Compressor Rotor Blade
,”
Proceedings of ASME Turbo Expo 2008
,
Berlin, Germany
,
June 9–13
, pp.
79
87
.
10.
Day
,
I.
,
Williams
,
J.
, and
Freeman
,
C.
,
2008
, “
Rain Ingestion in Axial Flow Compressors at Part Speed
,”
ASME J. Turbomach.
,
130
(
1
), p.
011024
.
11.
Eisfeld
,
T.
, and
Joos
,
F.
,
2010
, “
Experimental Investigation of the Aerodynamic Performance of a Linear Axial Compressor Cascade With Water Droplet Loading
,”
Proceedings of the ASME Turbo 2010
,
Glasgow, UK
,
June 14–18
, pp.
343
353
.
12.
Neupert
,
N.
,
Harbeck
,
J. C.
, and
Joos
,
F.
,
2019
, “
An Experimentally Derived Model to Predict the Water Film in a Compressor Cascade With Droplet Laden Flow
,”
ASME J. Eng. Gas Turbines Power.
,
141
(
9
), p.
092601
.
13.
Eisfeld
,
T.
, and
Joos
,
F.
,
2009
, “
Experimental Investigation of Two-Phase Flow Phenomena in Transonic Compressor Cascades
,”
Proceedings of ASME Turbo Expo 2009
,
Orlando, FL
,
June 8–12
, Vol.
7
. pp.
103
112
.
14.
Ulrichs
,
E.
, and
Joos
,
F.
,
2019
, “
Experimental Investigations of the Influence of Waterdroplets in Compressor Cascades
,”
Proceedings of ASME Turbo Expo 2019
,
Barcelona, Spain
,
May 8–11
, pp.
221
230
.
15.
Geist
,
S.
,
Harbeck
,
J.
, and
Joos
,
F.
,
2019
, “
Secondary Flow Measurements in a Compressor Cascade Using 3D LDA/PDA: Part A—Flow Topology and Its Numerical Representation
,”
Proceedings of ASME Turbo Expo 2019
,
Phoenix, AZ
,
July 17–21
, p.
9
.
16.
Harbeck
,
J.
,
Geist
,
S.
, and
Joos
,
F.
,
2019
, “
Secondary Flow Measurements in a Compressor Cascade Using 3D LDA/PDA: Part B—Dispersed Phase Effects on Flow Topology
,”
Proceedings of ASME Turbo Expo 2019
,
Phoenix, AZ
,
July 17–21
, p.
10
.
17.
Abramzon
,
B.
, and
Sirignano
,
W. A.
,
1989
, “
Droplet Vaporization Model for Spray Combustion Calculations
,”
Int. J. Heat Mass Transfer
,
32
(
9
), pp.
1605
1618
.
18.
Schiller
,
L.
, and
Naumann
,
A.
,
1933
, “
Über Die Grundlegenden Berechnungen Bei Der Schwerkraftaufbereitung
,”
Zeitschrift des Vereines für Ingenieure
,
77
(
12
), pp.
318
320
.
19.
Doerr
,
T.
,
Braun
,
S.
,
Schuster
,
S.
, and
Brillert
,
D.
,
2021
, “
Proof of Concept for a Novel Interstage Injection Design in Axial Compressors
,”
ASME J. Eng. Gas Turbines Power.
,
143
(
6
), p.
061030
.
20.
von Deschwanden
,
I.
,
Braun
,
S.
, and
Brillert
,
D.
,
2019
, “
Effect of Interstage Injection on Compressor Flow Characteristic
,”
Proceedings of the ASME-JSME-KSME Joint Fluids Engineering Conference
,
San Francisco, CA
,
July 28–Aug. 1
, p.
10
.
21.
Schnitzler
,
J. P.
,
von Deschwanden
,
I.
,
Clauss
,
S.
,
Benra
,
F. K.
,
Dohmen
,
H. J.
, and
Werner
,
K.
,
2014
, “
Experimental Determination of a Four Stage Axial Compressor Map Operating in Wet Compression
,”
Proceedings of ASME Turbo Expo 2014
,
Düsseldorf, Germany
,
June 16–20
, p.
10
.
22.
Clauss
,
S.
,
Schnitzler
,
J. P.
,
Barabas
,
B.
,
Nagabhushan
,
P. S.
,
Benra
,
F. K.
, and
Dohmen
,
H. J.
,
2013
, “
Test Rig Design to Explore Water Droplet Behavior in a Four Stage Axial Compressor
,”
Proceedings of the ASME 2013 International Mechanical Engineering Congress & Exposition
,
San Diego, CA
,
Nov. 15–21
, p.
12
.
23.
Eisfeld
,
T.
, and
Joos
,
F.
,
2009
, “
New Boundary Layer Treatment Methods for Compressor Cascades
,”
8th European Conferene on Turbomachinery
,
Graz, Austria
,
Mar. 23–27
,
ETC
, pp.
879
889
.
24.
The MathWorks, Inc., 2021, Matlab, R2021b, The MathWorks, Inc., Natick, MA.
25.
Vulpio
,
A.
,
Suman
,
A.
,
Casari
,
N.
,
Pinelli
,
M.
,
Appleby
,
C.
, and
Kyte
,
S.
,
2021
, “
Washing Effectiveness Assessment of Different Cleaners on a Small-Scale Multistage Compressor
,”
Proceedings of ASME Turbo Expo 2021
,
Virtual, Online
,
June 7–11
, p.
13
.
You do not currently have access to this content.