Abstract

This paper applies the computationally advantageous combination of a differential analysis technique and the adjoint method in the context of uncertainty quantification to the gradient-based robust design optimization of aerofoils. First, the accuracy and feasibility of the method is evaluated using an analytical test function. The method is subsequently applied to the robust design optimization of a rotor blade under geometric uncertainty, that is based on a parametrized population of optically 3D scanned blades. A significant improvement of the robustness w.r.t. the isentropic efficiency of the rotor is reported.

References

1.
Taguchi
,
G.
,
Chowdhury
,
S.
, and
Wu
,
Y.
,
2004
,
Quality Engineering: The Taguchi Method
,
John Wiley & Sons, Ltd.
,
Hoboken, NJ
.
2.
Kamenik
,
J.
,
Voutchkov
,
I.
,
Toal
,
D.
,
Keane
,
A. J.
,
Högner
,
L.
,
Meyer
,
M.
, and
Bates
,
R.
,
2018
, “
Robust Turbine Blade Optimization in the Face of Real Geometric Variations
,”
J. Propul. Power.
,
34
(
6
), pp.
1479
1493
.
3.
Nigro
,
R.
,
Wunsch
,
D.
,
Coussement
,
G.
, and
Hirsch
,
C.
,
2017
, “
Uncertainty Quantification in Internal Flows
,”
In 55th AIAA Aerospace Sciences Meeting
,
Grapevine, TX
.
4.
Helton
,
J. C.
, and
Davis
,
F. J.
,
2003
, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems
,”
Reliab. Eng. Syst. Saf.
,
81
(
1
), pp.
23
69
.
5.
Padulo
,
M.
,
Campobasso
,
S.
, and
Guenov
,
M.
,
2011
, “
Novel Uncertainty Propagation Method for Robust Aerodynamic Design
,”
AIAA. J.
,
49
(
3
), pp.
530
543
.
6.
Lange
,
A.
,
2015
, “
Probabilistische Performanceuntersuchung Eines Hochdruckverdichters Unter Berücksichtigung Geometrischer Variabilität
”. PhD thesis,
Technische Universität Dresden
,
Dresden, Germany
.
7.
Ghate
,
D.
, and
Giles
,
M.
,
2006
, “
Inexpensive Monte Carlo Uncertainty Analysis
”.
Recent Trends in Aerospace Design and Optimization
, pp.
203
210
.
8.
Kriegesmann
,
B.
,
2020
, “
Robust Design Optimization with Design-Dependent Random Input Variables
,”
Struct. Multidiscipl. Optim.
,
61
(
2
), pp.
661
674
.
9.
Forrester
,
A.
,
Sobester
,
A.
, and
Keane
,
A.
,
2008
,
Engineering Design Via Surrogate Modelling: A Practical Guide
,
John Wiley & Sons, Ltd.
,
Hoboken, NJ
.
10.
Polyak
,
B.
,
2010
,
Introduction to Optimization
,
Optimization Software, Inc
,
Publications Division, New York
.
11.
Nocedal
,
J.
, and
Wright
,
S. J.
,
2006
,
Line Search Methods
,
Springer New York
,
New York
, pp.
30
65
.
12.
Gräsel
,
J.
,
Keskin
,
A.
,
Swoboda
,
M.
,
Przewozny
,
H.
, and
Saxer
,
A.
,
2004
, “
A Full Parametric Model for Turbomachinery Blade Design and Optimisation
,”
Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 1: 30th Design Automation Conference
,
Salt Lake City, UT
, pp.
907
914
.
13.
Lange
,
A.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Schrapp
,
H.
,
Gümmer
,
V.
, and
Clemens
,
C.
,
2009
, “
Introduction of A Parameter Based Compressor Blade Model for Considering Measured Geometry Uncertainties in Numerical Simulation
,”
Proceedings of the ASME Turbo Expo 2009: Power for Land, Sea, and Air, Volume 6: Structures and Dynamics
,
Reno, NV
, pp.
1113
1123
.
14.
Lange
,
A.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Schrapp
,
H.
,
Johann
,
E.
, and
Gümmer
,
V.
,
2010
, “
Probabilistic CFD Simulation of a High-Pressure Compressor Stage Taking Manufacturing Variability Into Account
,”
Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air, Volume 6: Structures and Dynamics
,
Glasgow, UK
, pp.
617
628
.
15.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
30th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, p.
439
.
16.
Moinier
,
P.
,
1999
, “
Algorithm Developments for An Unstructured Viscous Flow Solver
”. PhD thesis,
Oxford University Oxford
,
UK
.
17.
Vasilopoulos
,
I.
,
Agarwal
,
D.
,
Meyer
,
M.
,
Robinson
,
T.
, and
Armstrong
,
C.
,
2016
, “
Linking Parametric CAD with Adjoint Surface Sensitivities
,”
Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering: ECCOMAS 2016
,
Crete Island, Greece
.
18.
Vasilopoulos
,
I.
,
2020
, “
CAD-Based and CAD-Free Aerodynamic Shape Optimization of Turbomachinery Blade Rows Using the Adjoint Method
”. PhD thesis,
National Technical University of Athens
,
Greece
.
You do not currently have access to this content.