Abstract

This paper investigates the influence of combustor temperature non-uniformities on modern engine turbine center frames (TCFs). Due to their position in an engine, coupled with the trends of more aggressive designs, increased turbine inlet temperatures (TIT), and utilization of lean-burn combustors, turbine center frames are exposed to even higher temperatures and non-uniform temperature flow fields. These temperature non-uniformities, or hot streaks (HS), were previously studied at the combustor—high-pressure turbine (HPT) interface, but there is no available research in the open literature that clarifies their influence on the TCF performance. A new test bench, designed specifically for fundamental research on hot streaks, was set up at the Institute for Thermal Turbomachinery and Machine Dynamics at the Graz University of Technology, Austria. The test bench features a 90 deg sector cascade of an engine representative TCF geometry, equipped with a hot streak generator and a flow conditioning grid. Experimental data were gathered by means of five-hole probe area traverses at the TCF inlet and outlet planes. Two individual clocking positions of hot streaks were investigated, as well as three different radial positions for each of the clocking scenarios. Hot streaks were injected upstream of the flow conditioning grid, generating a representative temperature ratio at the TCF inlet plane. Results show that the hot streaks have migrated radially outwards and are characterized by different temperature distributions, depending on the injection position. An increase in pressure loss and thermal loading of the strut and the shroud are observed.

References

1.
Varadarajan
,
K.
, and
Bogard
,
D. G.
,
2004
, “
Effects of Hot Streaks on Adiabatic Effectiveness for a Film Cooled Turbine Vane
,”
Proceedings of the ASME Turbo Expo, Vienna, Austria, June 14–17
, ASME Paper No. GT2004-54016.
2.
Povey
,
T.
,
Chana
,
K. S.
,
Jones
,
T. V.
, and
Hurrion
,
J.
,
2005
, “
The Effect of Hot-Streaks on HP Vane Surface and Endwall Heat Transfer: An Experimental and Numerical Study
,”
ASME J. Turbomach.
,
129
(
1
), pp.
32
43
.
3.
Jacobi
,
S.
,
Mazzoni
,
C.
,
Chana
,
K.
, and
Rosic
,
B.
,
2016
, “
Investigation of Unsteady Flow Phenomena in First Vane Caused by Combustor Flow With Swirl
,”
Proceedings of the ASME Turbo Expo, Seoul, South Korea, June 13–17
, ASME Paper No. GT2016-57358.
4.
Shang
,
T.
, and
Epstein
,
A. H.
,
1997
, “
Analysis of Hot Streak Effects on Turbine Rotor Heat Load
,”
ASME J. Turbomach.
,
119
(
3
), pp.
544
553
.
5.
Moss
,
R. W.
,
Ainsworth
,
R. W.
, and
Garside
,
T.
,
1998
, “
Effects of Rotation on Blade Surface Heat Transfer: An Experimental Investigation
,”
ASME J. Turbomach.
,
120
(
3
), pp.
530
540
.
6.
Butler
,
T. L.
,
Sharma
,
O. P.
,
Joslyn
,
H. D.
, and
Dring
,
R. P.
,
1989
, “
Redistribution of an Inlet Temperature Distortion in an Axial Flow Turbine Stage
,”
J. Propul. Power.
,
5
(
1
), pp.
64
71
.
7.
An
,
B.-T.
,
Liu
,
J.-J.
, and
Jiang
,
H.-D.
,
2009
, “
Numerical Investigation on Unsteady Effects of Hot Streak on Flow and Heat Transfer in a Turbine Stage
,”
ASME J. Turbomach.
,
131
(
3
), p.
031015
.
8.
de la Loma
,
A.
,
Paniagua
,
G.
,
Verrastro
,
D.
, and
Adami
,
P.
,
2008
, “
Transonic Turbine Stage Heat Transfer Investigation in Presence of Strong Shocks
,”
ASME J. Turbomach.
,
130
(
3
), p.
031019
.
9.
Qureshi
,
I.
,
Beretta
,
A.
,
Chana
,
K.
, and
Povey
,
T.
,
2011
, “
Effect of Aggressive Inlet Swirl on Heat Transfer and Aerodynamics in an Unshrouded Transonic HP Turbine
,”
Proceedings of the ASME Turbo Expo, Vancouver, Canada
,
June 6–10
, ASME Paper No. GT2011-46038.
10.
Khanal
,
B.
,
He
,
L.
,
Northall
,
J.
, and
Adami
,
P.
,
2013
, “
Analysis of Radial Migration of Hot-Streak in Swirling Flow Through High-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
135
(
4
), p.
041005
.
11.
Jenny
,
P.
,
Lenherr
,
C.
,
Abhari
,
R. S.
, and
Kalfas
,
A.
,
2012
, “
Effect of Hot Streak Migration on Unsteady Blade Row Interaction in an Axial Turbine
,”
ASME J. Turbomach.
,
134
(
5
), p.
051020
.
12.
Beard
,
P. F.
,
Smith
,
A.
, and
Povey
,
T.
,
2012
, “
Impact of Severe Temperature Distortion on Turbine Efficiency
,”
ASME J. Turbomach.
,
135
(
1
), p.
011018
.
13.
Gaetani
,
P.
, and
Persico
,
G.
,
2017
, “
Hot Streak Evolution in an Axial Hp Turbine Stage
,”
Int. J. Turbomach. Propul. Power
,
2
(
2
), p.
6
.
14.
Krumme
,
A.
,
Buske
,
C.
,
Bachner
,
J. R.
,
Dähnert
,
J.
,
Tegeler
,
M.
,
Ferraro
,
F.
,
Gövert
,
S.
,
Kocian
,
F.
,
di Mare
,
F.
, and
Pahs
,
A.
,
2019
, “
Investigation of Combustor-Turbine-Interaction in a Rotating Cooled Transonic High-Pressure Turbine Test Rig: Part 1 – Experimental Results
,”
Proceedings of the ASME Turbo Expo, Phoenix, AZ
,
June 17–21
, ASME Paper No. GT2019-90733.
15.
Göttlich
,
E.
,
2011
, “
Research on the Aerodynamics of Intermediate Turbine Diffusers
,”
Prog. Aerosp. Sci.
,
47
(
4
), pp.
249
279
.
16.
Zerobin
,
S.
,
Peters
,
A.
,
Bauinger
,
S.
,
Ramesh
,
A.
,
Steiner
,
M.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2017
, “
The Behavior of Turbine Center Frames Under the Presence of Purge Flows
,”
Proceedings of the ASME Turbo Expo
,
Charlotte NC
,
June 26–30
, ASME Paper No. GT2017-63606.
17.
Sterzinger
,
P. Z.
,
Merli
,
F.
,
Peters
,
A.
,
Behre
,
S.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2021
, “
Impact of Turbine-Strut Clocking on the Performance of a Turbine Center Frame
,”
ASME J. Turbomach.
,
143
(
5
), p.
051011
.
18.
Sovran
,
G.
, and
Klomp
,
E.D.
,
1967
, “
Experimentally Determined Optimum Geometries for Rectlinear Diffusers With Rectangular, Conical Or Annular Cross Section
,”
Fluid Mech. Internal Flow
,
21
, pp.
270
319
.
19.
Graiff
,
M.
,
Staggl
,
M.
,
Göttlich
,
E.
, and
Wakelam
,
C.
,
2021
, “
Design and Evaluation of a Flow Capturing Device for a High-Speed Wind Tunnel
,”
Proceedings of the ASME Turbo Expo, Virtual, Online
,
June 7–11
, ASME Paper No. GT2021-58667.
20.
Chen
,
L.-W.
,
Wakelam
,
C.
,
Ong
,
J.
,
Peters
,
A.
,
Milli
,
A.
, and
Michelassi
,
V.
,
2018
, “
Numerical Investigation of the Compressible Flow Through a Turbine Center Frame Duct
,”
Proceedings of the ASME Turbo Expo
,
Oslo, Norway
,
June 11–15
, ASME Paper No. GT2018-75307.
21.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
You do not currently have access to this content.