Abstract

The manufacturing and operational roughness of aerodynamic profiles impacts both the laminar and the turbulent boundary layers state, directly affecting the aerodynamic and thermal performance of typical turbomachinery components. By better understanding the underlying physical mechanisms, the present work aims at building a more refined and comprehensive model to take the effects of surface finish into account. The model is implemented into the MIT Multiple Blade Interacting Streamtube Euler Solver (MISES) and is validated against experimental results for different roughness levels, Reynolds number, and Mach number regimes. In the proposed model, the roughness effects on the turbulent boundary layer (BL) state are included through the modification of the turbulent skin friction law, while the roughness level is implemented through a new definition of ks that accounts for the influence of the roughness skewness. Particular emphasis is placed on the modeling of the transitionally rough regime. Finally, roughness effects on transition are modeled by implementing the Mayle rough-induced onset transition criterion. Results are validated in terms of the total pressure loss coefficient and the outlet flow angle, leading to a marked improvement in terms of agreement with the experimental data.

References

1.
Jiménez
,
J.
,
2004
, “
Turbulent Flows Over Rough Walls
,”
Annu. Rev. Fluid Mech.
,
36
, pp.
173
196
.
2.
Reif
,
B. P.
, and
Durbin
,
P.
,
2011
,
Statistical Theory and Modeling for Turbulent Flows
,
John Wiley & Sons
,
West Sussex, UK
.
3.
Nikuradse
,
J.
,
1933
, “
Naca Technical Memorandum 1292. Stromungsgesetze in Rauhen Rohren, vDI forschungshefte 361
” (English translation: Laws of Flow in Rough Pipes).
4.
Schlichting
,
H.
,
1937
, “
Experimental Investigation of the Problem of Surface Roughness, No. 823
,”
National Advisory Commitee for Aeronautics
.
5.
ASME
,
2009
,
Asme b46. 1-2009. Surface Texture (Surface Roughness, Waviness and Lay)
,
ASME
,
New York
.
6.
Cebeci
,
T.
, and
Chang
,
K.
,
1978
, “
Calculation of Incompressible Rough-Wall Boundary-Layer Flows
,”
AIAA. J.
,
16
(
7
), pp.
730
735
.
7.
Aupoix
,
B.
, and
Spalart
,
P.
,
2003
, “
Extensions of the Spalart–allmaras Turbulence Model to Account for Wall Roughness
,”
Int. J. Heat and Fluid Flow
,
24
(
4
), pp.
454
462
.
8.
Bradshaw
,
P.
,
1959
, “
A Simple Method for Determining Turbulent Skin Friction From Velocity Profiles
,”
J. Aerosp. Sci.
,
26
(
12
), pp.
841
841
.
9.
Clauser
,
F. H.
,
1954
, “
Turbulent Boundary Layers in Adverse Pressure Gradients
,”
J. Aeronaut. Sci.
,
21
(
2
), pp.
91
108
.
10.
Dvorak
,
F.
,
1969
, “
Calculation of Turbulent Boundary Layers on Rough Surfaces in Pressure Gradient
,”
AIAA. J.
,
7
(
9
), pp.
1752
1759
.
11.
Boyle
,
R. J.
, and
Stripf
,
M.
,
2009
, “
Simplified Approach to Predicting Rough Surface Transition
,”
ASME J. Turbomach.
,
131
(
4
), p.
041020
.
12.
Bons
,
J. P.
,
Taylor
,
R. P.
,
McClain
,
S. T.
, and
Rivir
,
R. B.
,
2001
, “
The Many Faces of Turbine Surface Roughness
,”
ASME J. Turbomach.
,
123
(
4
), pp.
739
748
.
13.
Yuan
,
J.
, and
Piomelli
,
U.
,
2014
, “
Estimation and Prediction of the Roughness Function on Realistic Surfaces
,”
J. Turbul.
,
15
(
6
), pp.
350
365
.
14.
Sigal
,
A.
, and
Danberg
,
J. E.
,
1990
, “
New Correlation of Roughness Density Effect on the Turbulent Boundary Layer
,”
AIAA. J.
,
28
(
3
), pp.
554
556
.
15.
Hama
,
F. R.
,
1954
, “
Boundary Layer Characteristics for Smooth and Rough Surfaces
,”
Trans. Soc. Nav. Arch. Mar. Eng.
,
62
, pp.
333
358
.
16.
Bettermann
,
D.
,
1965
,
Contribution a l’etude de la couche limite turbulente le long de plaques rugueuses.
,
Centre National de la Recherche Scientifique Laboratoire d’Aerothermique
,
Meudon, France
.
17.
Dirling Jr
,
R.
,
1973
, “
A Method for Computing Roughwall Heat Transfer Rates on Reentry Nosetips
,”
8th Thermophysics Conference
,
Palm Springs, CA
, p.
763
.
18.
Simpson
,
R. L.
,
1973
, “
A Generalized Correlation of Roughness Density Effects on the Turbulent Boundary Layer.
,”
AIAA. J.
,
11
(
2
), pp.
242
244
.
19.
Schaffler
,
A.
,
1980
, “
Experimental and Analytical Investigation of the Effects of Reynolds Number and Blade Surface Roughness on Multistage Axial Flow Compressors
,”
J. Eng. Power
,
102
(
1
), pp.
5
12
.
20.
Mayle
,
R. E.
,
1991
, “
The 1991 IGTI Scholar Lecture: The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
(
4
), pp.
509
536
.
21.
Radeztsky Jr
,
R. H.
,
Reibert
,
M. S.
, and
Saric
,
W. S.
,
1999
, “
Effect of Isolated Micron-Sized Roughness on Transition in Swept-Wing Flows
,”
AIAA. J.
,
37
(
11
), pp.
1370
1377
.
22.
Arnal
,
D.
,
Seraudie
,
A.
, and
Archambaud
,
J.
,
2000
, “Influence of Surface Roughness and of Suction on the Receptivity of a Swept Wing Boundary Layer,”
Laminar-Turbulent Transition. IUTAM Symposia
,
H. F.
Fasel
, and
W. S.
Saric
, eds.,
Springer
,
Berlin/Heidelberg
.
23.
Degrez
,
G.
,
2013
,
Two-Dimensional Boundary Layers, Revised Edition, Course Note 143
,
von Karman Institute for Fluid Dynamics
,
Sint-Genesius-Rode, Belgium
.
24.
Roberts
,
W. B.
,
1979
, “
Axial Compressor Blade Optimization in the Low Reynolds Number Regime
,”
AIAA. J.
,
17
(
12
), pp.
1361
1367
.
25.
Roberts
,
S.
, and
Yaras
,
M.
,
2004
, “
Modeling of Boundary-Layer Transition
,”
Turbo Expo: Power for Land, Sea, and Air
,
Vienna, Austria
, Vol. 41693, pp.
81
92
.
26.
Arnal
,
D.
,
2004
, “
Laminarity and Laminar-Turbulent Transition Control
,”
Tiré à part- Office national d’études et de recherches aerospatiales.
27.
Youngren
,
H. H.
,
1991
,
“Analysis and Design of Transonic Cascades with Splitter Vanes,” PhD thesis, Massachusetts Institute of Technology, Cambridge, MA
.
28.
Giles
,
M. B.
, and
Drela
,
M.
,
1987
, “
Two-Dimensional Transonic Aerodynamic Design Method
,”
AIAA. J.
,
25
(
9
), pp.
1199
1206
.
29.
Abu-Ghannam
,
B.
, and
Shaw
,
R.
,
1980
, “
Natural Transition of Boundary Layers—The Effects of Turbulence, Pressure Gradient, and Flow History
,”
J. Mech. Eng. Sci.
,
22
(
5
), pp.
213
228
.
30.
Drela
,
M.
,
1989
, “
Integral Boundary Layer Formulation for Blunt Trailing Edges
,”
7th Applied Aerodynamics Conference
,
Seattle, WA
, p.
2166
.
31.
Arndt
,
R. E.
, and
Ippen
,
A. T.
,
1968
, “
Rough Surface Effects on Cavitation Inception
,”
J. Basic Eng.
,
90
(
2
), pp.
249
261
.
32.
Swafford
,
T.
,
1983
, “
Analytical Approximation of Two-Dimensional Separated Turbulent Boundary-Layer Velocity Profiles
,”
AIAA. J.
,
21
(
6
), pp.
923
926
.
33.
Mack
,
L. M.
,
1977
, “
Transition Prediction and Linear Stability Theory
,”
AGARD Laminar-Turbulent Transition
,
Lyngby, Denmark
.
34.
Lione
,
F.
, and
Galbiati
,
G. M.
,
2020
,
“Experimental and Theoretical Analysis of the Roughness Effect on Modern Compressor Bladings,” Master Thesis, Politecnico di Milano, Milan, Italy
.
35.
Schultz
,
D.
,
Jones
,
T.
,
Oldfield
,
M.
, and
Daniels
,
L.
,
1978
, “
A New Transient Cascade Facility for the Measurement of Heat Transfer Rates
,”
AGARD High Temp. Probl. in Gas Turbine Eng, 27 p(SEE N 78-21118 12-07).
36.
Back
,
S. C.
,
Sohn
,
J. H.
, and
Song
,
S. J.
,
2010
, “
Impact of Surface Roughness on Compressor Cascade Performance
,”
ASME J. Fluids Eng.
,
132
(
6
), p.
064502
.
You do not currently have access to this content.