Abstract

This article presents the implementation of a particle image velocimetry (PIV) into the high-speed short-duration rotating turbine facility of the von Karman Institute. The advantage of PIV as a whole-field measurement is emphasized in such circumstances for which the use of optical technique can drastically reduce the number of tests and the need for multiple intrusive expensive probes, ultimately lowering the testing cost. Practical solutions were demonstrated that address various challenges for the effective application of PIV. An endoscope delivered the laser sheet to the region of interest and a plano-concave window provided optical access for the measurement in the annular test section. Sub-micron scale oil droplets were seeded into the main flow through custom-made probes located upstream of the nozzle guide vane and into a pipeline supplying rim seal purge flow. A high-speed laser system and a high-speed camera were synchronized at 1 kHz sampling rate. Complementary measurements and dedicated image processing were performed to ensure the synchronization of the PIV images with the rotor position that was monitored through an encoder. The region of interest was the blade-to-blade plane at the 58% span turbine exit on a rectangular field of view covering approximately one rotor pitch and 0.15 rotor axial chord from the rotor trailing edge. Phase-locked-average velocity fields are obtained from PIV and compared against steady-state Reynolds-averaged Navier–Stokes (RANS) simulations along with four-hole probe measurement results. Together with uncertainty analysis, the results demonstrate the promising robustness and accuracy of PIV. A practical guideline for PIV application in such kinds of turbine test rigs is provided as a conclusion of the paper.

References

1.
Boerner
,
M.
,
Bitter
,
M.
, and
Niehuis
,
R.
,
2018
, “
On the Challenge of Five-Hole-Probe Measurements at High Subsonic Mach Numbers in the Wake of Transonic Turbine Cascades
,”
J. Global Power Propul. Soc.
,
2
, pp.
453
464
.
2.
Cernat
,
B.
,
Pinho
,
J.
,
Okada
,
M.
, and
Lavagnoli
,
S.
,
2022
, “
Experimental Investigation of a High-Speed Turbine With Rainbow Rotor and Rim Seal Purge Flow
,”
ASME Turbo Expo 2022
,
Rotterdam, The Netherlands
,
June 13–17
,
Paper No. GT2022-83129
.
3.
Meynart
,
R.
,
1983
, “
Mesure de champs de vitesse dcoulements fluides par analyse de suites d’images obtenues par diffusion d’un feuillet lumineux
,” Ph.D. thesis,
Universite Libre de Bruxelles, Brussels
, October.
4.
Raffel
,
M.
,
Willert
,
C. E.
,
Scarano
,
F.
,
Kahler
,
C. J.
,
Wereley
,
S.
, and
Kompenhans
,
J.
,
2018
,
Particle Image Velocimetry
,
Springer
,
Cham
.
5.
Bhattacharya
,
S.
,
Berdanier
,
R. A.
,
Vlachos
,
P. P.
, and
Key
,
N. L.
,
2016
, “
A New Particle Image Velocimetry Technique for Turbomachinery Applications
,”
ASME J. Turbomach.
,
138
(
12
), p.
124501
.
6.
Woisetschläger
,
J.
,
Mayrhofer
,
N.
,
Hampel
,
B.
,
Lang
,
H.
, and
Sanz
,
W.
,
2003
, “
Laser-Optical Investigation of Turbine Wake Flow
,”
Exp. Fluids
,
34
(
3
), pp.
371
378
.
7.
Stieger
,
R. D.
,
Hollis
,
D.
, and
Hodson
,
H. P.
,
2004
, “
Unsteady Surface Pressures Due to Wake-Induced Transition in a Laminar Separation Bubble on a Low-Pressure Cascade
,”
ASME J. Turbomach.
,
126
(
4
), pp.
544
550
.
8.
Rehder
,
H.-J.
, and
Dannhauer
,
A.
,
2006
, “
Experimental Investigation of Turbine Leakage Flows on the Three-Dimensional Flow Field and Endwall Heat Transfer
,”
ASME J. Turbomach.
,
129
(
3
), pp.
608
618
.
9.
Gallier
,
K. D.
,
Lawless
,
P. B.
, and
Fleeter
,
S.
,
2004
, “
Development of the Unsteady Flow on a Turbine Rotor Platform Downstream of a Rim Seal
,” Vol.
5 of Turbo Expo: Power for Land, Sea, and Air
, pp.
939
947
, Paper No. GT2004-53899.
10.
Porreca
,
L.
,
Yun
,
Y. I.
,
Kalfas
,
A. I.
,
Song
,
S. J.
, and
Abhari
,
R. S.
,
2006
, “
Investigation of 3D Unsteady Flows in a Two Stage Shrouded Axial Turbine Using Stereoscopic PIV and FRAP: Part I—Interstage Flow Interactions
,” Vol.
6 of Turbo Expo: Power for Land, Sea, and Air
, pp.
711
723
, Paper No. GT2006-90752.
11.
Kegalj
,
M.
, and
Schiffer
,
H.-P.
,
2008
, “
Endoscopic PIV Measurement in a Low Pressure Turbine Rig
,”
Exp. Fluids
,
47
(
689
), pp.
689
705
.
12.
Bryanston-Cross
,
P. J.
,
Towers
,
C. E.
,
Judge
,
T. R.
,
Towers
,
D. P.
,
Harasgama
,
S. P.
, and
Hopwood
,
S. T.
,
1992
, “
The Application of Particle Image Velocimetry (PIV) in a Short-Duration Transonic Annular Turbine Cascade
,”
ASME J. Turbomach.
,
114
(
3
), pp.
504
509
.
13.
Chemnitz
,
S.
, and
Niehuis
,
R.
,
2020
, “
A Comparison of Turbulence Levels From Particle Image Velocimetry and Constant Temperature Anemometry Downstream of a Low-Pressure Turbine Cascade at High-Speed Flow Conditions
,”
ASME J. Turbomach.
,
142
(
7
), p.
071008
.
14.
Inman
,
D.
,
Cuadrado
,
D. G.
,
Andreoli
,
V.
,
Fisher
,
J.
,
Paniagua
,
G.
,
Aye-Addo
,
P. A. N.
,
Bhatnagar
,
L.
,
Lozano
,
F.
,
Meyer
,
T.
, and
Bloxham
,
M.
,
2021
, “
Particle Image Velocimetry in a High-Pressure Turbine Stage at Aerodynamically Engine Representative Conditions
,”
ASME J. Eng Gas Turbines Power
,
143
(
6
), p.
061031
.
15.
Bryanston-Cross
,
P.
,
Udrea
,
D.
,
Guenette
,
G.
, and
Epstein
,
A.
,
1997
, “
Whole-Field Visualisation and Velocity Measurement of an Instantaneous Transonic Turbine Flow
,”
ICIASF'97 Record. International Congress on Instrumentation in Aerospace Simulation Facilities
,
Pacific Grove, CA
,
Sept. 29–Oct. 2
, pp.
278
286
. .
16.
Lang
,
H.
,
Mørck
,
T.
, and
Woisetschläger
,
J.
,
2002
, “
Stereoscopic Particle Image Velocimetry in a Transonic Turbine Stage
,”
Exp. Fluids
,
32
(
6
), pp.
700
709
.
17.
Göttlich
,
E.
,
Woisetschläger
,
J.
,
Pieringer
,
P.
,
Hampel
,
B.
, and
Heitmeir
,
F.
,
2005
, “
Investigation of Vortex Shedding and Wake-Wake Interaction in a Transonic Turbine Stage Using Laser-Doppler-Velocimetry and Particle-Image-Velocimetry
,”
ASME J. Turbomach.
,
128
(
1
), pp.
178
187
.
18.
Tisserant
,
D.
, and
Breugelmans
,
F. A. E.
,
1997
, “
Rotor Blade-to-Blade Measurements Using Particle Image Velocimetry
,”
ASME J. Turbomach.
,
119
(
2
), pp.
176
181
.
19.
Wernet
,
M. P.
,
2000
, “
Development of Digital Particle Imaging Velocimetry for Use in Turbomachinery
,”
Exp. Fluids
,
28
(
2
), pp.
97
115
.
20.
Paniagua
,
G.
,
Sieverding
,
C. H.
, and
Arts
,
T.
,
2013
, “
Review of the Von Karman Institute Compression Tube Facility for Turbine Research
,” Vol.
3C of Turbo Expo: Power for Land, Sea, and Air
, Paper No. GT2013-95984.
21.
Andreoli
,
V.
,
Lavagnoli
,
S.
,
Paniagua
,
G.
, and
Fernandez Villace
,
V.
,
2016
, “
Robust Model of a Transient Wind Tunnel for Off-Design Aerothermal Testing of Turbomachinery
,”
Measurement
,
82
, pp.
323
333
.
22.
Schultz
,
D.
,
1977
, “
A New Transient Cascade Facility for the Measurement of Heat Transfer Rates
,”
Univ. Oxford, Dept. Engineering Science
, OUEL Report.
23.
Cernat
,
B.
,
Pàtỳ
,
M.
,
De Maesschalck
,
C.
, and
Lavagnoli
,
S.
,
2018
, “
Experimental and Numerical Investigation of Optimized Blade Tip Shapes—Part I: Turbine Rainbow Rotor Testing and Numerical Methods
,”
ASME J. Turbomach.
,
141
(
1
), p.
011006
.
24.
Woisetschläger
,
J.
,
Rene
,
P.
,
Göttlich
,
E.
,
Schennach
,
O.
,
Marn
,
A.
,
Sanz
,
W.
, and
Heitmeir
,
F.
,
2008
, “
Experimental and Numerical Flow Visualization in a Transonic Turbine
,”
J. Vis.
,
11
(
1
), pp.
95
102
.
25.
Tropea
,
C.
,
Yarin
,
A.
, and
Foss
,
J. F.
,
2007
,
Springer Handbook of Experimental Fluid Mechanics
,
Springer
,
Berlin
.
26.
Clift
,
R.
,
Grace
,
J. R.
,
Weber
,
M. E.
, and
Weber
,
M. F.
,
1978
,
Bubbles, Drops, and Particles
,
Academic Press
,
New York
.
27.
Israel
,
R.
, and
Rosner
,
D. E.
,
1982
, “
Use of a Generalized Stokes Number to Determine the Aerodynamic Capture Efficiency of Non-Stokesian Particles From a Compressible Gas Flow
,”
Aerosol Sci. Technol.
,
2
(
1
), pp.
45
51
.
28.
Pizer
,
S. M.
,
Amburn
,
E. P.
,
Austin
,
J. D.
,
Cromartie
,
R.
,
Geselowitz
,
A.
,
Greer
,
T.
,
Zimmerman
,
J. B.
, and
Zuiderveld
,
K.
,
1987
, “
Adaptive Histogram Equalization and Its Variations
,”
Comput. Vis. Graph. Image Process.
,
39
(
3
), pp.
355
368
.
29.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
30.
Willert
,
C. E.
, and
Gharib
,
M.
,
1991
, “
Digital Particle Image Velocimetry
,”
Exp. Fluids
,
10
(
4
), pp.
181
193
.
You do not currently have access to this content.