Abstract

The pronounced nonuniform temperature distribution in the core engine flow path is a recurring problem of gas turbine engine design process. Specifically, turbine entry conditions are usually characterized by severe temperature distortions, often referred to as hot and cold streaks, ascribed to combustor burners and combustor liners cooling systems. Temperature distortions remain an issue even at the exit section of the nozzle guide vane (NGV), where additional cold streaks coming from the vane film-cooling system are injected into the flow. A precise knowledge of thermal field and its evolution is thus essential to mitigate their impact on turbine performance and lifetime. Various studies focus on the description of streaks migration through a direct investigation of the thermal field, providing an effective evaluation of the global phenomenon. As a deeper understanding is often required, experimental techniques based on the detection of tracer gases can be successfully adopted. In this study, a realistic combustor outlet swirl profile was imposed on a fully cooled NGV cascade to analyze both film-cooling behavior and cold streaks migration and redirection. A concentration probe based on the fluorescence behavior of an oxygen sensor, fully characterized in a previous work, was here employed to track the position of the film cooling flows at the NGV cascade exit plane, while the adiabatic film-cooling effectiveness was evaluated on the NGV surfaces employing the pressure sensitive paint (PSP) technique. Overall, the swirling structure strongly affects both the film-cooling behavior and cold streaks migration through and downstream the vane. The importance of examining the unsteady aspect is also highlighted to better estimate actual components operating temperatures. A global understanding of the occurring phenomena is therefore provided, as well as significant pieces of information that can be extremely useful for the design phases of both the NGV and the following rotor cascade.

References

1.
Wilfert
,
G.
,
Sieber
,
J.
,
Rolt
,
A.
,
Baker
,
N.
,
Touyeras
,
A.
, and
Colantuoni
,
S.
,
2007
, “
New Environmental Friendly Aero Engine Core Concepts
,”
18th ISABE Conference
,
Beijing, China
,
Sept. 2–7
.
2.
Hall
,
B. F.
,
Chana
,
K. S.
, and
Povey
,
T.
,
2014
, “
Design of a Nonreacting Combustor Simulator With Swirl and Temperature Distortion With Experimental Validation
,”
ASME J. Eng. Gas Turbines Power
,
136
(
8
), p.
081501
.
3.
Qureshi
,
I.
,
Beretta
,
A.
, and
Povey
,
T.
,
2011
, “
Effect of Simulated Combustor Temperature Nonuniformity on HP Vane and End Wall Heat Transfer: An Experimental and Computational Investigation
,”
ASME J. Eng. Gas Turbines Power
,
133
(
3
), p.
031901
.
4.
Jenkins
,
S.
,
Varadarajan
,
K.
, and
Bogard
,
D. G.
,
2004
, “
The Effects of High Mainstream Turbulence and Turbine Vane Film Cooling on the Dispersion of a Simulated Hot Streak
,”
ASME J. Turbomach.
,
126
(
1
), pp.
203
211
.
5.
Jenkins
,
S. C.
, and
Bogard
,
D. G.
,
2009
, “
Superposition Predictions of the Reduction of Hot Streaks by Coolant From a Film-Cooled Guide Vane
,”
ASME J. Turbomach.
,
131
(
4
), p.
041002
.
6.
Perdichizzi
,
A.
,
Abdeh
,
H.
,
Barigozzi
,
G.
,
Henze
,
M.
, and
Krueckels
,
J.
,
2017
, “
Aerothermal Performance of a Nozzle Vane Cascade With a Generic Nonuniform Inlet Flow Condition—Part I: Influence of Nonuniformity Location
,”
ASME J. Turbomach.
,
139
(
3
), p.
031002
.
7.
Barigozzi
,
G.
,
Abdeh
,
H.
,
Perdichizzi
,
A.
,
Henze
,
M.
, and
Krueckels
,
J.
,
2017
, “
Aerothermal Performance of a Nozzle Vane Cascade With a Generic Nonuniform Inlet Flow Condition—Part II: Influence of Purge and Film Cooling Injection
,”
ASME J. Turbomach.
,
139
(
10
), p.
101004
.
8.
Barigozzi
,
G.
,
Mosconi
,
S.
,
Perdichizzi
,
A.
, and
Ravanelli
,
S.
,
2017
, “
The Effect of Hot Streaks on a High Pressure Turbine Vane Cascade With Showerhead Film Cooling
,”
Int. J. Turbomach. Propul. Power
,
2
(
3
), p.
15
.
9.
Bacci
,
T.
,
Lenzi
,
T.
,
Picchi
,
A.
,
Mazzei
,
L.
, and
Facchini
,
B.
,
2019
, “
Flow Field and Hot Streak Migration Through a High Pressure Cooled Vanes With Representative Lean Burn Combustor Outflow
,”
ASME J. Eng. Gas Turbines Power
,
141
(
4
), p.
041020
.
10.
Adams
,
M. G.
,
Beard
,
P. F.
,
Stokes
,
M. R.
,
Wallin
,
F.
,
Chana
,
K. S.
, and
Povey
,
T.
,
2021
, “
Effect of a Combined Hot-Streak and Swirl Profile on Cooled 1.5-Stage Turbine Aerodynamics: An Experimental and Computational Study
,”
ASME J. Turbomach.
,
143
(
2
), p.
021011
.
11.
Han
,
J. C.
, and
Rallabandi
,
A. P.
,
2010
, “
Turbine Blade Film Cooling Using PSP Technique
,”
Front. Heat Mass Transfer
,
1
(
1
), pp.
1
21
.
12.
Butler
,
T. L.
,
Sharma
,
O. P.
,
Joslyn
,
H. D.
, and
Dring
,
R. P.
,
1989
, “
Redistribution of an Inlet Temperature Distortion in an Axial Flow Turbine Stage
,”
J. Propul. Power
,
5
(
1
), pp.
64
71
.
13.
Feiereisen
,
J.
,
Paolillo
,
R.
, and
Wagner
,
J.
,
2000
, “
UTRC Turbine Rim Seal Ingestion and Platform Cooling Experiments
,”
36th AIAA/ASME/SAE/ASEE Joint Conference and Exhibit
,
Las Vegas, NV
,
July 24–28
.
14.
Lefrancois
,
J.
,
Boutet-Blais
,
G.
,
Dumas
,
G.
,
Krishnamoorthy
,
V.
,
Mohammed
,
R.
,
Yepuri
,
G.
,
Felix
,
J.
,
Caron
,
J.
, and
Marini
,
R.
,
2011
, “
Prediction of Rim Seal Ingestion
,”
20th ISABE Conference
,
Gothenburg, Sweden
,
Sept. 12–16
.
15.
Giller
,
L.
, and
Schiffer
,
H.-P.
,
2012
, “
Interactions Between the Combustor Swirl and the High Pressure Stator of a Turbine
,”
Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
,
Copenhagen, Denmark
,
June 11–15
.
16.
Bacci
,
T.
,
Becchi
,
R.
,
Picchi
,
A.
, and
Facchini
,
B.
,
2019
, “
Adiabatic Effectiveness on High-Pressure Turbine Nozzle Guide Vanes Under Realistic Swirling Conditions
,”
ASME J. Turbomach.
,
141
(
1
), p.
011009
.
17.
Werschnik
,
H.
,
Hilgert
,
J.
,
Wilhelm
,
M.
,
Bruschewski
,
M.
, and
Schiffer
,
H. P.
,
2017
, “
Influence of Combustor Swirl on Endwall Heat Transfer and Film Cooling Effectiveness at the Large Scale Turbine Rig
,”
ASME J. Turbomach.
,
139
(
8
), p.
081007
.
18.
Werschnik
,
H.
,
Schneider
,
M.
,
Herrmann
,
J.
,
Ivanov
,
D.
,
Schiffer
,
H.-P.
, and
Lyko
,
C.
,
2017
, “
The Influence of Combustor Swirl on Pressure Losses and the Propagation of Coolant Flows at the LargeScale Turbine Rig (LSTR): Experimental and Numerical Investigation
,”
Int. J. Turbomach. Propul. Power
,
2
(
3
), p.
12
.
19.
Wilhelm
,
M.
,
Schmidt
,
M.
,
Goertz
,
F.
,
Schiffer
,
H.
, and
Lyko
,
C.
,
2017
, “
Influence of Combustor Swirl on Turbulence at the Large Scale Turbine Rig (LSTR)
,”
23rd ISABE Conference
,
Manchester, UK
,
Sept. 3–8
.
20.
Jacobi
,
S.
,
Mazzoni
,
C.
,
Rosic
,
B.
, and
Chana
,
K.
,
2017
, “
Investigation of Unsteady Flow Phenomena in First Vane Caused by Combustor Flow With Swirl
,”
ASME J. Turbomach.
,
139
(
4
), p.
041006
.
21.
Shaikh
,
F.
, and
Rosic
,
B.
,
2021
, “
Unsteady Phenomena at the Combustor–Turbine Interface
,”
J. Global Power Propul. Soc.
,
5
(
1
), pp.
202
214
.
22.
Babazzi
,
G.
,
Bacci
,
T.
,
Picchi
,
A.
,
Fondelli
,
T.
,
Lenzi
,
T.
,
Facchini
,
B.
, and
Cubeda
,
S.
,
2022
, “
Development and Application of a Concentration Probe for Mixing Flows Tracking in Turbomachinery Applications
,”
ASME J. Turbomach.
,
144
(
3
), p.
031013
.
23.
Cubeda
,
S.
,
Bacci
,
T.
,
Mazzei
,
L.
,
Salvadori
,
S.
,
Facchini
,
B.
,
Fiorineschi
,
L.
, and
Volpe
,
Y.
,
2020
, “
Design of a Non-Reactive Warm Rig With Real Lean-Premix Combustor Swirlers and Film-Cooled First Stage Nozzles
,” Proceedings of ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, Paper No. GT2020-14186.
24.
Andreini
,
A.
,
Caciolli
,
G.
,
Facchini
,
B.
,
Picchi
,
A.
, and
Turrini
,
F.
,
2014
, “
Experimental Investigation of the Flow Field and the Heat Transfer on a Scaled Cooled Combustor Liner With Realistic Swirling Flow Generated by a Lean-Burn Injection System
,”
ASME J. Turbomach.
,
137
(
3
), p.
031012
.
25.
Koupper
,
C.
,
Caciolli
,
G.
,
Gicquel
,
L.
,
Duchaine
,
F.
,
Bonneau
,
G.
,
Tarchi
,
L.
, and
Facchini
,
B.
,
2014
, “
Development of an Engine Representative Combustor Simulator Dedicated to Hot Streak Generation
,”
ASME J. Turbomach.
,
136
(
11
), p.
111007
.
26.
Wurm
,
B.
,
Schulz
,
A.
,
Bauer
,
H.-J.
, and
Gerendas
,
M.
,
2012
, “
Impact of Swirl Flow on the Cooling Performance of an Effusion Cooled Combustor Liner
,”
ASME J. Eng. Gas Turbines Power
,
134
(
12
), p.
121503
.
27.
Bacci
,
T.
,
Picchi
,
A.
,
Facchini
,
B.
, and
Cubeda
,
S.
,
2022
, “
A New Experimental Approach for Heat Transfer Coefficient and Adiabatic Wall Temperature Measurements on a Nozzle Guide Vane With Inlet Temperature Distortions
,”
ASME J. Turbomach.
,
144
(
3
), p.
031007
.
28.
Charbonnier
,
D.
,
Ott
,
P.
,
Jonsson
,
M.
,
Cottier
,
F.
, and
Kobke
,
T.
,
2009
, “
Experimental and Numerical Study of the Thermal Performance of a Film Cooled Turbine Platform.
,” ASME Conference Proceedings, Paper No. GT2009-60306.
29.
Schmid
,
G.
,
Krichbaum
,
A.
,
Werschnik
,
H.
, and
Schiffer
,
H.-P.
,
2014
, “
The Impact of Realistic Inlet Swirl in A 1 1/2 Stage Axial Turbine
,” Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Paper No. GT2014-26716.
30.
Krichbaum
,
A.
,
Werschnik
,
H.
,
Wilhelm
,
M.
,
Schiffer
,
H.-P.
, and
Lehmann
,
K.
,
2015
, “
A Large Scale Turbine Test Rig for the Investigation of High Pressure Turbine Aerodynamics and Heat Transfer With Variable Inflow Conditions
,” Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Paper No. GT2015-43261.
31.
Werschnik
,
H.
,
Schneider
,
M.
,
Herrmann
,
J.
,
Ivanov
,
D.
,
Schiffer
,
H. P.
, and
Lyko
,
C.
,
2017
, “
The Influence of Combustor Swirl on Pressure Losses and the Propagation of Coolant Flows at the Large Scale Turbine Rig (LSTR): Experimental and Numerical Investigation
,”
Int. J. Turbomach. Propul. Power
,
2
(
3
), pp.
1
18
.
32.
Liu
,
T.
, and
Sullivan
,
J. P.
,
2005
,
Pressure and Temperature Sensitive Paints
, 1st ed.,
Springer
,
Berlin/Heidelberg
, p.
328
.
33.
Ocean Insight
,
Ocean Insight: Technical Report
, “
Principles of Optical Dissolved Oxygen Measurements
,” https://www.oceaninsight.com/globalassets/catalog-blocks-and-images/app-notes/principles-of-optical-dissolved-oxygen-measurements.pdf
34.
Forth
,
C.
, and
Jones
,
T.
,
1986
, “
Scaling Parameters in Film-Cooling
,” Eighth International Heat Transfer Conference, San Francisco, CA, Aug. 17–22,
Hemisphere Publishing
,
Washington, DC
, Vol.
3
, pp.
1271
1276
.
35.
Sinha
,
A.
,
Bogard
,
D.
, and
Crawford
,
M.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
.
36.
Day
,
C.
,
Oldfield
,
M.
, and
Lock
,
G.
,
2000
, “
Aerodynamic Performance of an Annular Cascade of Film Cooled Nozzle Guide Vanes Under Engine Representative Conditions
,”
Exp. Fluids
,
29
(
1
), pp.
117
129
.
37.
Luque
,
S.
,
Jones
,
V.
, and
Povey
,
T.
,
2017
, “
Scaling of Turbine Metal Temperatures in Cooled Compressible Flows – Experimental Demonstration of a New Theory
,”
ASME J. Turbomach.
,
139
(
8
), p.
081001
.
You do not currently have access to this content.