Abstract

A rotating thin blade with bend-torsional coupling subjected to vortex induced vibration (VIV) is considered in this paper. It is necessary to study the motion coupled bending torsion due to the discordant centroid and shear center and the effect of centrifugal force at high-speed. The blade with a single axisymmetric section is regarded as a beam instead of an oscillator. The motion equation coupled bending-torsion of the blade is established by using the Euler–Lagrange equations, and the effect of centrifugal force is also employed. Vortex shedding is described by a nonlinear oscillator satisfying Van Der Pol (VDP) equation. Ritz–Galerkin method is employed to simplify the equations of the blade, and the interaction between the bending and torsion modes of blade and wake modes is discussed. The motion equation is simplified based on the contribution of the blade flutter mode. Furthermore, the single-mode approximation is used to investigate the effects of mass ratio, damping, and coupling coefficient on the locking phenomenon. It is also analyzed that the variation of flutter amplitude and locking region of the rotating blade considering bending-torsion coupling.

References

1.
Hoskoti
,
L.
,
Misra
,
A.
, and
Sucheendran
,
M.
,
2018
, “
Frequency Lock-In During Vortex Induced Vibration of a Rotating Blade
,”
J. Fluids Struct.
,
80
, pp.
145
164
.
2.
Hoskoti
,
L.
,
Aravinth
,
A. D.
,
Misra
,
A.
, and
Sucheendran
,
M. M.
,
2020
, “
Frequency Lock-In During Nonlinear Vibration of an Airfoil Coupled With Van Der Pol Oscillator
,”
J. Fluids Struct.
,
92
, pp.
0889
9746
.
3.
Wang
,
D.
,
Chen
,
Y. S.
,
Hao
,
Z. F.
, and
Cao
,
Q. J.
,
2016
, “
Bifurcation Analysis for Vibrations of a Turbine Blade Excited by Air Flows
,”
Sci. China Technol. Sci.
,
59
(
8
), pp.
1217
1231
.
4.
Besem
,
F. M.
,
Thomas
,
J. P.
,
Kielb
,
R. E.
, and
Dowell
,
E. H.
,
2016
, “
An Aeroelastic Model for Vortex-Induced Vibrating Cylinders Subject to Frequency Lock-In
,”
J. Fluids Struct.
,
61
, pp.
42
59
.
5.
Kang
,
Z.
,
Ni
,
W.
, and
Sun
,
L.
,
2017
, “
A Numerical Investigation on Capturing the Maximum Transverse Amplitude in Vortex Induced Vibration for Low Mass Ratio
,”
Mar. Struct
,
52
, pp.
94
107
.
6.
Wang
,
E.
,
Xiao
,
Q.
, and
Incecik
,
A.
,
2017
, “
Three-Dimensional Numerical Simulation of Two-Degree-of-Freedom VIV of a Circular Cylinder With Varying Natural Frequency Ratios at Re = 500
,”
J. Fluids Struct.
,
73
, pp.
162
182
.
7.
Gan
,
J.
,
Im
,
H.
, and
Zha
,
G.
,
2017
, “
Numerical Examination of Lock-In Hypothesis of Non-Synchronous Vibration in an Axial Compressor
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
Jun 26
, pp.
1
12
.
8.
Lai
,
J.
, and
Platzer
,
M.
,
1999
, “
Jet Characteristics of a Plunging Airfoil
,”
AIAA J.
,
37
(
12
), pp.
1529
1537
.
9.
Young
,
J.
, and
Lai
,
S.
,
2004
, “
Oscillation Frequency and Amplitude Effects on the Wake of a Plunging Airfoil
,”
AIAA J.
,
42
(
10
), pp.
2042
2052
.
10.
Gostelow
,
J.
,
Platzer
,
M.
, and
Carscallen
,
W.
,
2006
, “
On Vortex Formation in the Wake Flows of Transonic Turbine Blades and Oscillating Airfoils
,”
ASME J. Turbomach.
,
128
(
3
), pp.
528
535
.
11.
Postnikov
,
A.
,
Pavlovskaia
,
E.
, and
Wiercigroch
,
M.
,
2017
, “
2 DOF CFD Calibrated Wake Oscillator Model to Investigate Vortex-Induced Vibrations
,”
Int. J. Mech. Sci.
,
127
, pp.
176
190
.
12.
Kurushina
,
V.
,
Pavlovskaia
,
E.
,
Postnikov
,
A.
, and
Wiercigroch
,
M.
,
2018
, “
Calibration and Comparison of VIV Wake Oscillator Models for Low Mass Ratiostructures
,”
Int. J. Mech. Sci.
,
142
, pp.
547
560
.
13.
Srinivasan
,
S.
,
Narasimhamurthy
,
V.
, and
Patnaik
,
B.
,
2018
, “
Reduced Order Modeling of Two Degree-of-Freedom Vortex Induced Vibrations of a Circular Cylinder
,”
J. Wind Eng. Ind. Aerodyn.
,
175
, pp.
342
351
.
14.
Srinil
,
N.
,
Opinel
,
P.
, and
Tagliaferri
,
F.
,
2018
, “
Empirical Sensitivity of Two-Dimensional Nonlinear Wake Cylinder Oscillators in Cross-Flow/In-Line Vortex-Induced Vibrations
,”
J. Fluids Struct.
,
83
, pp.
310
338
.
15.
Banerjee
,
J.
, and
Kennedy
,
D.
,
2014
, “
Dynamic Stiffness Method for in Plane Free Vibration of Rotating Beams Including Coriolis Effects
,”
J. Sound Vib.
,
333
(
26
), pp.
7299
7312
.
16.
Wang
,
D.
,
Chen
,
Y.
,
Wiercigroch
,
M.
, and
Cao
,
Q.
,
2016
, “
Bifurcation and Dynamic Response Analysis of Rotating Blade Excited by Upstream Vortices
,”
Appl. Math. Mech.
,
37
(
9
), pp.
1251
1274
.
17.
Wang
,
D.
,
Chen
,
Y.
,
Wiercigroch
,
M.
, and
Cao
,
Q.
,
2016
, “
A Three-Degree-of-Freedom Model for Vortex-Induced Vibrations of Turbine Blades
,”
Meccanica
,
51
(
11
), pp.
2607
2628
.
18.
Poirel
,
D.
,
Goyaniuk
,
L.
, and
Benaissa
,
A.
,
2018
, “
Frequency Lock-In in Pitch–Heave Stall Flutter
,”
J. Fluids Struct.
,
79
, pp.
14
25
.
19.
Hoskoti
,
L.
,
Misra
,
A.
, and
Sucheendran
,
M.
,
2019
, “
Lock-In Phenomenon of a Pitching and Plunging Airfoil
,”
AIAA Scitech 2019 Forum
,
San Diego, CA
,
Jan. 7
, pp.
0488
0503
.
20.
Roy
,
P. A.
, and
Meguid
,
S. A.
,
2018
, “
Analytical Modeling of the Coupled Nonlinear Free Vibration Response of a Rotating Blade in a Gas Turbine Engine
,”
Acta Mech.
,
229
(
8
), pp.
3355
3373
.
21.
Turhan
,
O.
, and
Bulut
,
G.
,
2009
, “
On Nonlinear Vibrations of a Rotating Beam
,”
J. Sound Vib.
,
322
(
1–2
), pp.
314
335
.
22.
Facchinettia
,
M. L.
,
de Langre
,
E.
, and
Biolley
,
F.
,
2004
, “
Coupling of Structure and Wake Oscillators in Vortex-Induced Vibrations
,”
J. Fluids Struct.
,
19
(
2
), pp.
123
140
.
23.
Keber
,
M.
,
2012
, “
Vortex-Induced Vibration of Offshore Risers: Theoretical Modelling and Analysis
,”
Ph.D. dissertation
,
University of Aberdeen
,
Aberdeen
.
You do not currently have access to this content.