Abstract

The clearance of compressor blade tips during aero-engine accelerations is an important design issue for next-generation engine architectures. The transient clearance depends on the radial expansion of the compressor discs, which is directly coupled to conjugate heat transfer in co-rotating discs governed by unsteady and unstable buoyancy-induced flow. This paper discusses an experimental and modeling study using the Bath Compressor Cavity Rig, which simulates a generic axial compressor at fluid-dynamically scaled conditions. The rig was specifically designed to generate heat transfer of practical interest to the engine designer and validate computational codes. This work presents the first study of the fundamental fluid dynamic and heat transfer phenomena under transient conditions. The rotating flow structure was seen to be characterized by coherent pairs of cyclonic/anticyclonic vortex pairs; the strength, rotational frequency, stability, and number of these unsteady structures changed with changing rotational Reynolds and Grashof numbers during the transients. These structures, measured by unsteady pressure transducers in the rotating frame of reference, were only present when the flow in the rotating cavity was dominated by buoyancy. Experimental correlations of both Nusselt number and radial mass flowrate in the rotating core were correlated against Grashof number. Remarkably, the experiments revealed a consistent correlation for both steady-state and transient conditions over a wide range of Gr. The results have a practical application to thermo-mechanical models for engine design.

1.
Diemel
,
E.
,
Odenbach
,
S.
,
Uffrecht
,
W.
,
Villazon
,
J. R.
,
Valencia
,
A. G.
, and
Reinecke
,
M.
,
2019
, “
High Speed Single Cavity Rig With Axial Throughflow of Cooling Air: Rig Structure and Periphery
,” ASME Paper No. GT2019-91265.
2.
Atkins
,
N. R.
,
2013
, “
Investigation of a Radial-Inflow Bleed as a Potential for Compressor Clearance Control
,” ASME Paper No. GT2013-95768.
3.
Owen
,
J. M.
, and
Long
,
C. A.
,
2015
, “
Review of Buoyancy-Induced Flow in Rotating Cavities
,”
ASME J. Turbomach.
,
137
(
11
), p.
111001
.
4.
Tang
,
H.
, and
Owen
,
J. M.
,
2018
, “
Theoretical Model of Buoyancy-Induced Heat Transfer in Closed Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p.
032605
.
5.
Sun
,
Z.
,
Kifoil
,
A.
,
Chew
,
J. W.
, and
Hills
,
N. J.
,
2004
, “
Numerical Simulation of Natural Convection in Stationary and Rotating Cavities
,” ASME Paper No. GT2004-53528.
6.
Bohn
,
D.
,
Deuker
,
E.
,
Emunds
,
R.
, and
Gorzelitz
,
V.
,
1995
, “
Experimental and Theoretical Investigations of Heat Transfer in Closed Gas-Filled Rotating Annuli
,”
ASME J. Turbomach.
,
117
(
1
), pp.
175
183
.
7.
King
,
M. P.
,
Wilson
,
M.
, and
Owen
,
J. M.
,
2007
, “
Rayleigh–Bénard Convection in Open and Closed Rotating Cavities
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
305
311
.
8.
Owen
,
J. M.
,
2010
, “
Thermodynamic Analysis of Buoyancy-Induced Flow in Rotating Cavities
,”
ASME J. Turbomach.
,
132
(
3
), p.
031006
.
9.
Pitz
,
D. B.
,
Marxen
,
O.
, and
Chew
,
J. W.
,
2017
, “
Onset of Convection Induced by Centrifugal Buoyancy in a Rotating Cavity
,”
J. Fluid Mech.
,
826
, pp.
484
502
.
10.
Pitz
,
D. B.
,
Chew
,
J. W.
,
Marxen
,
O.
, and
Hills
,
N. J.
,
2017
, “
Direct Numerical Simulation of Rotating Cavity Flows Using a Spectral Element-Fourier Method
,”
ASME J. Eng. Gas Turbines Power
,
139
(
7
), p.
072602
.
11.
Pitz
,
D. B.
,
Chew
,
J. W.
, and
Marxen
,
O.
,
2019
, “
Large-Eddy Simulation of Buoyancy-Induced Flow in a Sealed Rotating Cavity
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021020
.
12.
Gao
,
F.
,
Pitz
,
D. B.
, and
Chew
,
J. W.
,
2020
, “
Numerical Investigation of Buoyancy-Induced Flow in a Sealed Rapidly Rotating Disc Cavity
,”
Int. J. Heat Mass Transfer
,
147
, p.
118860
.
13.
Pitz
,
D. B.
, and
Wolf
,
W. R.
,
2022
, “
Coriolis Force Effects on Radial Convection in a Cylindrical Annulus
,”
Int. J. Heat Mass Transfer
,
189
, p.
122650
.
14.
Bohn
,
D.
,
Dibelius
,
G. H.
,
Deuker
,
E.
, and
Emunds
,
R.
,
1994
, “
Flow Pattern and Heat Transfer in a Closed Rotating Annulus
,”
ASME J. Turbomach.
,
116
(
3
), pp.
542
547
.
15.
Bohn
,
D.
,
Emunds
,
R.
,
Gorzelitz
,
V.
, and
Krüger
,
U.
,
1996
, “
Experimental and Theoretical Investigations of Heat Transfer in Closed Gas-Filled Rotating Annuli II
,”
ASME J. Turbomach.
,
118
(
1
), pp.
11
19
.
16.
Jackson
,
R. W.
,
Tang
,
H.
,
Scobie
,
J. A.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2022
, “
Measurement of Heat Transfer and Flow Structures in a Closed Rotating Cavity
,”
ASME J. Eng. Gas Turbines Power
,
144
(
5
), p.
051005
.
17.
Lock
,
G. D.
,
Jackson
,
R. W.
,
Pernak
,
M. J.
,
Pountney
,
O. J.
,
Sangan
,
C. M.
,
Owen
,
J. M.
,
Tang
,
H.
, and
Scobie
,
J. A.
,
2023
, “
Stratified and Buoyancy-Induced Flow in Closed Compressor Rotors
,”
ASME J. Turbomach.
,
145
(
1
), p.
011001
.
18.
Farthing
,
P. R.
,
Long
,
C. A.
,
Owen
,
J. M.
, and
Pincombe
,
J. R.
,
1992
, “
Rotating Cavity With Axial Throughflow of Cooling Air: Flow Structure
,”
ASME J. Turbomach.
,
114
(
1
), pp.
237
246
.
19.
Tian
,
S.
,
Tao
,
Z.
,
Ding
,
S.
, and
Xu
,
G.
,
2004
, “
Investigation of Flow and Heat Transfer Instabilities in a Rotating Cavity With Axial Throughflow of Cooling Air
,” ASME Paper No. GT2004-53525.
20.
Bohn
,
D. E.
,
Deutsch
,
G. N.
,
Burkhard
,
S.
, and
Burkhardt
,
C.
,
2000
, “
Flow Visualisation in a Rotating Cavity With Axial Throughflow
,” ASME Paper No. 2000-GT-0280.
21.
Long
,
C. A.
,
Miché
,
N. D. D.
, and
Childs
,
P. R. N.
,
2007
, “
Flow Measurements Inside a Heated Multiple Rotating Cavity With Axial Throughflow
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1391
1404
.
22.
Jackson
,
R. W.
,
Tang
,
H.
,
Scobie
,
J. A.
,
Pountney
,
O. J.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2022
, “
Unsteady Pressure Measurements in a Heated Rotating Cavity
,”
ASME J. Eng. Gas Turbines Power
,
144
(
4
), p.
041017
.
23.
Gao
,
F.
, and
Chew
,
J. W.
,
2022
, “
Flow and Heat Transfer Mechanisms in a Rotating Compressor Cavity Under Centrifugal Buoyancy-Driven Convection
,”
ASME J. Eng. Gas Turbines Power
,
144
(
5
), p.
051010
.
24.
Gao
,
F.
, and
Chew
,
J. W.
,
2021
, “
Ekman Layer Scrubbing and Shroud Heat Transfer in Centrifugal Buoyancy-Driven Convection
,”
ASME J. Eng. Gas Turbines Power
,
143
(
7
), p.
071010
.
25.
Bohn
,
D.
, and
Gier
,
J.
,
1998
, “
The Effect of Turbulence on the Heat Transfer in Closed Gas-Filled Rotating Annuli for Different Rayleigh Numbers
,” ASME Paper No. 98-GT-542.
26.
Saini
,
D.
, and
Sandberg
,
R. D.
,
2020
, “
Simulations of Compressibility Effects in Centrifugal Buoyancy-Induced Flow in a Closed Rotating Cavity
,”
Int. J. Heat Fluid Flow
,
85
, p.
108656
.
27.
Long
,
C. A.
, and
Childs
,
P. R. N.
,
2007
, “
Shroud Heat Transfer Measurements Inside a Heated Multiple Rotating Cavity With Axial Throughflow
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1405
1417
.
28.
Tang
,
H.
, and
Owen
,
J. M.
,
2017
, “
Effect of Buoyancy-Induced Rotating Flow on Temperatures of Compressor Disks
,”
ASME J. Eng. Gas Turbines Power
,
139
(
6
), p.
062506
.
29.
Jackson
,
R. W.
,
Tang
,
H.
,
Scobie
,
J. A.
,
Pountney
,
O. J.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Analysis of Shroud and Disk Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
9
), p.
091005
.
30.
Rozman
,
M.
,
DeShong
,
E. T.
,
Berdanier
,
R. A.
,
Thole
,
K. A.
, and
Robak
,
C.
,
2023
, “
Characterizing Flow Instabilities During Transient Events in the Turbine Rim Seal Cavity
,”
ASME J. Turbomach.
,
145
(
3
), p.
031014
.
31.
Burkhardt
,
C.
, and
Mayer
,
A.
,
1992
, “
Transient Thermal Behaviour of a Compressor Rotor With Axial Cooling Air Flow and Co-Rotating or Contra-Rotating Shaft
,” AGARD CP527, pp.
21.1
21.9
.
32.
Luberti
,
D.
,
Patinios
,
M.
,
Jackson
,
R. W.
,
Tang
,
H.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Design and Testing of a Rig to Investigate Buoyancy-Induced Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041030
.
33.
Pountney
,
O. J.
,
Patinios
,
M.
,
Tang
,
H.
,
Luberti
,
D.
,
Sangan
,
C. M.
,
Scobie
,
J. A.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Calibration of Thermopile Heat Flux Gauges Using a Physically-Based Equation
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
235
(
7
), pp.
1806
1816
.
34.
Nicholas
,
T. E. W.
,
Pernak
,
M. J.
,
Scobie
,
J. A.
,
Lock
,
G. D.
, and
Tang
,
H.
,
2023
, “
Transient Heat Transfer and Temperatures in Closed Compressor Rotors
,”
Appl. Therm. Eng.
,
230
(Part B), p.
120759
.
35.
Tang
,
H.
, and
Owen
,
J. M.
,
2022
, “
Plume Model for Buoyancy-Induced Flow and Heat Transfer in Closed Rotating Cavities
,”
ASME J. Turbomach.
,
145
(
1
), p.
011005
.
36.
Tang
,
H.
,
Shardlow
,
T.
, and
Owen
,
J. M.
,
2015
, “
Use of Fin Equation to Calculate Nusselt Numbers for Rotating Disks
,”
ASME J. Turbomach.
,
137
(
12
), p.
121003
.
37.
Tang
,
H.
, and
Owen
,
J. M.
,
2021
, “
Effect of Radiation on Heat Transfer Inside Aeroengine Compressor Rotors
,”
ASME J. Turbomach.
,
143
(
5
), p.
051001
.
You do not currently have access to this content.