Abstract

Serpentine, multi-pass cooling passages are used in cooling advanced gas turbine blades. In the open literature, most internal cooling studies use a fixed cross-sectional area for multi-pass channels. Studies that use varying aspect ratio channels, along with a guide vane to direct the flow with turning, are scarce. Therefore, this study investigates the effect of using different guide vane designs on both detailed heat transfer distribution and pressure loss in a multi-pass channel with an aspect ratio of (4:1) in the entry passage and (2:1) in the second passage downstream of the vane(s). The first vane configuration is one solid vane with a semi-circular cross section connecting the two flow passages. The second configuration has three broken vanes with a quarter-circular cross section; two broken vanes are located downstream in the first passage, and one broken vane is upstream in the second passage. Detailed heat transfer distributions were obtained on all surfaces within the flow passages by using a transient liquid crystal method. Results show that including the semi-circular vane in the turning region enhanced the overall heat transfer by around 29% with a reduction in pressure loss by around 20%. Moreover, results show that the quarter-circular vane design provides higher overall averaged heat transfer enhancement than the semi-circular vane design by around 9% with penalty of higher pressure drop by 6%, which yields higher thermal performance by 7%, over a Reynolds number range from 15,000 to 45,000.

References

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
Boca Raton, FL
. ISBN:978-1-4398-5568-3.
2.
Han
,
J. C.
,
Chandra
,
P. R.
, and
Lau
,
S. C.
,
1988
, “
Local Heat/Mass Transfer Distributions Around Sharp 180 Deg Turns in Two-Pass Smooth and Rib-Roughened Channels
,”
ASME J. Heat Transfer
,
110
(
1
), pp.
91
98
.
3.
Han
,
J. C.
, and
Zhang
,
P.
,
1989
, “
Pressure Loss Distribution in Three-Pass Rectangular Channels With Rib Turbulators
,”
ASME J. Turbomach.
,
111
(
4
), pp.
515
521
.
4.
Ekkad
,
S.
, and
Han
,
J. C.
,
1995
, “
Local Heat Transfer Distributions Near a Sharp 180 Deg Turn of a Two-Pass Smooth Square Channel With Transient Liquid Crystal Image Technique
,”
J. Flow Vis. Image Process.
,
2
(
3
), pp.
285
297
.
5.
Son
,
S. Y.
,
Kihm
,
K. D.
, and
Han
,
J. C.
,
2002
, “
PIV Flow Measurements for Heat Transfer Characterization in Two-Pass Square Channels With Smooth and 90 Deg Ribbed Walls
,”
Int. J. Heat Mass Transfer
,
45
(
24
), pp.
4809
4822
.
6.
Metzger
,
D. E.
, and
Sahm
,
M. K.
,
1986
, “
Heat Transfer Around Sharp 180 Deg Turns in Smooth Rectangular Channels
,”
ASME J. Heat Transfer
,
108
(
3
), pp.
500
506
.
7.
Wang
,
T. S.
, and
Chyu
,
M. K.
,
1994
, “
Heat Convection in a 180-Deg Turning Duct With Different Turn Configurations
,”
J. Thermophys. Heat Transfer
,
8
(
3
), pp.
595
601
.
8.
Saha
,
K.
, and
Acharya
,
S.
,
2013
, “
Bend Geometries in Internal Cooling Channels for Improved Thermal Performance
,”
ASME J. Turbomach.
,
135
(
3
), p.
031028
.
9.
Metzger
,
D. E.
,
Plevich
,
C. W.
, and
Fan
,
C. S.
,
1984
, “
Pressure Loss Through Sharp 180 Deg Turns in Smooth Rectangular Channels
,”
ASME J. Eng. Gas Turbines Power
,
106
(
3
), pp.
677
681
.
10.
Liou
,
T. M.
, and
Chen
,
C. C.
,
1999
, “
Heat Transfer in a Rotating Two-Pass Smooth Passage With 180 Deg Rectangular Turn
,”
Int. J. Heat Mass Transfer
,
42
(
2
), pp.
231
247
.
11.
Luo
,
J.
, and
Razinsky
,
E. H.
,
2009
, “
Analysis of Turbulent Flow in 180 Deg Turning Ducts With and Without Guide Vanes
,”
ASME J. Turbomach.
,
131
(
2
), p.
021011
.
12.
Schüler
,
M.
,
Zehnder
,
F.
,
Weigand
,
B.
,
Von Wolfersdorf
,
J.
, and
Neumann
,
S. O.
,
2010
, “
The Effect of Turning Vanes on Pressure Loss and Heat Transfer of a Ribbed Rectangular Two-Pass Internal Cooling Channel
,”
ASME J. Turbomach.
,
133
(
2
), p.
021017
.
13.
Rao
,
D. V. R.
,
Babu
,
C. S.
, and
Prabhu
,
S. V.
,
2004
, “
Effect of Turn Region Treatments on the Pressure Loss Distribution in a Smooth Square Channel With Sharp 180 Deg Bend
,”
Int. J. Rotating Mach.
,
10
(
6
), pp.
459
468
.
14.
Metzger
,
D. E.
, and
Plevich
,
C. W.
,
1990
, “
Effects of Turn Region Treatments on Pressure Loss Through Sharp 180 Deg Bends
,”
Proceedings of the ISROMAC-3
,
Honolulu, HI
,
Apr. 1–4
, pp.
301
312
.
15.
Lei
,
J.
,
Li
,
S.
,
Han
,
J.
,
Zhang
,
L.
, and
Moon
,
H.
,
2013
, “
Heat Transfer in Rotating Multipass Rectangular Ribbed Channel With and Without a Turning Vane
,”
ASME J. Heat Transfer
,
135
(
4
), p.
041903
.
16.
Yang
,
S. F.
,
Wu
,
H. W.
,
Han
,
J. C.
,
Zhang
,
L.
, and
Moon
,
H. K.
,
2017
, “
Heat Transfer in a Smooth Rotating Multi-Passage Channel With Hub Turning Vane and Trailing-Edge Slot Ejection
,”
Int. J. Heat Mass Transfer
,
109
, pp.
1
15
.
17.
Chu
,
H.
,
Chen
,
H.
, and
Han
,
J.
,
2017
, “
Numerical Simulation of Flow and Heat Transfer in Rotating Cooling Passage With Turning Vane in Hub Region
,”
ASME J. Heat Transfer
,
140
(
2
), p.
021701
.
18.
Chen
,
A. F.
,
Wu
,
H.
,
Wang
,
N.
, and
Han
,
J.
,
2018
, “
Heat Transfer in a Rotating Cooling Channel (AR = 2:1) With Rib Turbulators and a Tip Turning Vane
,”
ASME J. Heat Transfer
,
140
(
10
), p.
102007
.
19.
Xie
,
G.
, and
Sundén
,
B.
,
2011
, “
Effects of Guide Vanes on the Tip Heat Transfer Enhancement of a Turbine Blade
,”
Proceedings of the ASME 2011 Turbo Expo
, Vol.
5
,
Vancouver, Canada
,
June 6–10
, pp.
1183
1191
.
20.
Park
,
J. S.
,
Lee
,
D. M.
,
Lee
,
D. H.
,
Lee
,
S.
,
Kim
,
B. S.
, and
Cho
,
H. H.
,
2017
, “
Thermal Performance in a Rotating Two-Passage Channel With Various Turning Guide Vanes
,”
J. Mech. Sci. Technol.
,
31
(
7
), pp.
3581
3591
.
21.
Chyu
,
M. K.
, and
Natarajan
,
V.
,
1994
, “
Surface Heat Transfer From a Three-Pass Blade Cooling Passage Simulator
,”
Proceedings of the ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition
, Vol.
4
,
The Hague, Netherlands
,
June 13–16
.
22.
Eifel
,
M.
,
Caspary
,
V.
,
Hönen
,
H.
, and
Jeschke
,
P.
,
2010
, “
Experimental and Numerical Analysis of Gas Turbine Blades With Different Internal Cooling Geometries
,”
ASME J. Turbomach.
,
133
(
1
), p.
011018
.
23.
Jenkins
,
S. C.
,
Zehnder
,
F.
,
Shevchuk
,
I. V.
,
Von Wolfersdorf
,
J.
,
Weigand
,
B.
, and
Schnieder
,
M.
,
2012
, “
The Effects of Ribs and Tip Wall Distance on Heat Transfer for a Varying Aspect Ratio Two-Pass Ribbed Internal Cooling Channel
,”
ASME J. Turbomach.
,
135
(
2
), p.
021001
.
24.
Siddique
,
W.
,
El-Gabry
,
L.
,
Shevchuk
,
I. V.
,
Hushmandi
,
N. B.
, and
Fransson
,
T. H.
,
2012
, “
Flow Structure, Heat Transfer and Pressure Drop in Varying Aspect Ratio Two-Pass Rectangular Smooth Channels
,”
Heat Mass Transfer
,
48
(
5
), pp.
735
748
.
25.
Rallabandi
,
A.
,
Lei
,
J.
,
Han
,
J.
,
Azad
,
S.
, and
Lee
,
C.
,
2014
, “
Heat Transfer Measurements in Rotating Blade–Shape Serpentine Coolant Passage With Ribbed Walls at High Reynolds Numbers
,”
ASME J. Turbomach.
,
136
(
9
), p.
091004
.
26.
Wright
,
L. M.
,
Yang
,
S.
,
Wu
,
H.
,
Han
,
J.
,
Lee
,
C.
,
Azad
,
S.
, and
Um
,
J.
,
2019
, “
Heat Transfer in a Rotating, Blade-Shaped Serpentine Cooling Passage With Discrete Ribbed Walls at High Reynolds Numbers
,”
ASME J. Heat Transfer
,
142
(
1
), p.
012002
.
27.
Chen
,
A. F.
,
Shiau
,
C.
,
Han
,
J.
, and
Krewinkel
,
R.
,
2019
, “
Heat Transfer in a Rotating Two-Pass Rectangular Channel Featuring Reduced Cross-Sectional Area After Tip Turn (Aspect Ratio = 4:1 to 2:1) With Profiled 60 Deg Angled Ribs
,”
ASME J. Turbomach.
,
141
(
7
), p.
071008
.
28.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
1997
, “
Detailed Heat Transfer Distributions in Two-Pass Square Channels With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
40
(
11
), pp.
2525
2537
.
29.
Vogel
,
G.
, and
Weigand
,
B.
,
2001
, “
A New Evaluation Method for Transient Liquid Crystal Experiments
,”
Proceedings of the 35th National Heat Transfer Conference
,
Anaheim, CA
, NHTC2001-20250.
30.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
31.
Webb
,
R. L.
, and
Eckert
,
E. R. G.
,
1972
, “
Application of Rough Surfaces to Heat Exchanger Design
,”
Int. J. Heat Mass Transfer
,
15
(
9
), pp.
1647
1658
.
You do not currently have access to this content.