Abstract

Leading-edge multi-channel double-wall design, a novel internal cooling structure, has been presented recently to enable higher overall cooling effectiveness with less penalty of coolant and pressure loss. Our previous work has proved the advantages of the design under operating condition relative to conventional internal cooling methods, including impingement cooling and swirl cooling. Channel impingement cooling structure, which is utilized at the turning region of the leading edge, is the critical factor to realize the high cooling performance of the design. Hence, the turning angle and turning internal radius of the cooling channel are two key parameters for the novel design, and this paper focuses on the effects of these two parameters on the flow and heat transfer characteristics of the design. Nine simplified single-channel models with different turning angles (45 deg, 60 deg, and 75 deg) and radii (0.6 mm, 0.9 mm, and 1.2 mm) were adopted to conduct the study, and the jet Reynolds number ranges from 10,000 to 40,000. The results show that the turning angle and turning internal radius affect the jet form significantly for the same mechanism. Small turning angle means large impingement, which leads to stream-wise counter-rotational vortices and high turbulence intensity, but increasing turning internal radius transfers the jet form from impingement jet to laminar layer attaching the target surface with low heat transfer. The turning internal radius has stronger effect than turning angle. With higher jet Reynolds number, both the heat transfer and total pressure loss increase dramatically, and the effects of geometrical parameters are clearer.

References

1.
Luan
,
Y. G.
,
Bu
,
S.
,
Sun
,
H. O.
, and
Sun
,
T.
,
2016
, “
Numerical Investigation on Flow and Heat Transfer in Matrix Cooling Channels for Turbine Blades
,”
ASME Paper No. GT2016-56279
.
2.
Bu
,
S.
,
Yang
,
Z.
,
Zhang
,
W.
,
Liu
,
H.
, and
Sun
,
H.
,
2016
, “
Research on the Thermal Performance of Matrix Cooling Channel With Response Surface Methodology
,”
Appl. Therm. Eng.
,
109
, pp.
75
86
.
3.
Acharya
,
S.
,
Zhou
,
F.
,
Lagrone
,
J.
,
Mahmood
,
G.
, and
Bunker
,
R. S.
,
2005
, “
Latticework (Vortex) Cooling Effectiveness: Rotating Channel Experiments
,”
ASME J. Turbomach.
,
127
(
3
), pp.
471
478
.
4.
Luan
,
Y. G.
,
Yang
,
L. F.
,
Yin
,
Y.
, and
Zunino
,
P.
,
2019
, “
Research on the Effects of Dimples and Protrusions on Flow and Heat Transfer in Matrix Cooling Channels in Turbine Blades
,”
ASME Paper No. GT2019-90830
.
5.
Saha
,
K.
,
Guo
,
S.
,
Acharya
,
S.
, and
Nakamata
,
C.
,
2008
, “
Heat Transfer and Pressure Measurement in a Lattice-Cooled Trailing Edge of a Turbine Airfoil
,”
ASME Paper No. GT2008-51324
.
6.
Oh
,
I. T.
,
Kim
,
K. M.
,
Lee
,
D. H.
,
Park
,
J. S.
, and
Cho
,
H. H.
,
2012
, “
Local Heat/Mass Transfer and Friction Loss Measurement in a Rotation Matrix Cooling Channel
,”
J. Heat Transfer
,
134
(
1
), p.
011901
.
7.
Rao
,
Y.
,
Zhang
,
X.
, and
Zang
,
S. S.
,
2014
, “
Flow and Heat Transfer Characteristics in Latticework Cooling Channels With Dimple Vortex Generators
,”
ASME J. Turbomach.
,
136
(
2
), p.
021017
.
8.
Deng
,
H. W.
,
Wang
,
K.
,
Zhu
,
J. Q.
, and
Pan
,
W. Y.
,
2013
, “
Experimental Study on Heat Transfer and Flow Resistance in Improved Latticework Cooling Channels
,”
J. Therm. Sci.
,
22
(
3
), pp.
250
256
.
9.
Sun
,
H. O.
,
Sun
,
T.
,
Yang
,
L. F.
,
Bu
,
S.
, and
Luan
,
Y. G.
,
2018
, “
Effect of Bleed Hole on Internal Flow and Heat Transfer in Matrix Cooling Channel
,”
Appl. Therm. Eng.
,
136
, pp.
419
430
.
10.
Murray
,
A. V.
,
Ireland
,
P. T.
, and
Rawlinson
,
A. J.
,
2017
, “
An Integrated Conjugate Computational Approach for Evaluating the Aerothermal and Thermomechanical Performance of Double-Wall Effusion Cooled Systems
,”
ASME Paper No. GT2017-64711
.
11.
Siw
,
S. C.
,
Chyu
,
M. K.
,
Karaivanov
,
V. G.
,
Slaughter
,
W. S.
, and
Alvin
,
M. A.
,
2009
, “
Influence of Internal Cooling Configuration on Metal Temperature Distributions of Future Coal-Fuel Based Turbine Airfoils
,”
ASME Paper No. GT2009-59829
.
12.
Sweeney
,
P. C.
, and
Rhodes
,
J. F.
,
1999
, “
An Infrared Technique for Evaluating Turbine Airfoil Cooling Designs
,”
ASME Paper No. 99-GT-142
.
13.
Manzhao
,
K.
,
Huiren
,
Z.
,
Songling
,
L.
, and
Hepeng
,
Y.
,
2008
, “
Internal Heat Transfer Characteristics of Lamilloy Configurations
,”
Chin. J. Aeronaut.
,
21
(
1
), pp.
28
34
.
14.
Rhee
,
D. H.
,
Choi
,
J. H.
, and
Cho
,
H. H.
,
2003
, “
Flow and Heat (Mass) Transfer Characteristics in an Impingement/Effusion Cooling System With Crossflow
,”
ASME J. Turbomach.
,
125
(
1
), pp.
74
82
.
15.
Hong
,
S. K.
,
Rhee
,
D. H.
, and
Cho
,
H. H.
,
2005
, “
Effects of Fin Shapes and Arrangements on Heat Transfer for Impingement∕Effusion Cooling With Crossflow
,”
ASME Paper No. GT2005-68684
.
16.
Chyu
,
M. K.
,
Hsing
,
Y. C.
, and
Natarajan
,
V.
,
1998
, “
Convective Heat Transfer of Cubic Fin Arrays in a Narrow Channel
,”
ASME J. Turbomach.
,
120
(
2
), pp.
362
367
.
17.
Dailey
,
G.
,
2000
, "
Aero-Thermal Performance of Internal Cooling Systems in Turbomachines
,"
Von Karman Institute Lecture Series, VKI-LS 2000-03
.
18.
Risnyk
,
S.
,
Artushenko
,
A.
,
Kravchenko
,
I.
, and
Borys
,
S.
,
2017
, “
Experimental Investigation of Two Competitive High Pressure Turbine Blade Cooling Systems
,”
ASME Paper No. GT2009-59829
.
19.
Zhang
,
L. Z.
,
Yin
,
J.
, and
Moon
,
H. K.
,
2017
, “
Airfoil for Turbomachine and Airfoil Cooling Method
,” United States Patent Publication No. US 2017/0248022 A1.
20.
He
,
W.
,
Deng
,
Q. H.
,
He
,
J.
,
Gao
,
T. Y.
, and
Feng
,
Z. P.
,
2019
, “
Effects of Jetting Orifice Geometry Parameters and Mach Number on Bended Channel Cooling for a Novel Internal Cooling Structure
,” ASME Paper No. GT2019-90421.
21.
He
,
W.
,
Deng
,
Q. H.
,
He
,
J.
,
Gao
,
T. Y.
, and
Feng
,
Z. P.
,
2019
, “
Heat Transfer and Flow Mechanisms of Jetting Deflection in a Novel Bended Channel Cooling for Gas Turbine Blades
,”
IWHT Paper No. 2019-53
.
22.
Timko
,
L. P.
,
1984
, “
Energy Efficient Engine High Pressure Turbine Component Test Performance Report
,”
NASA Contractor Report 168289
.
23.
Takeshi
,
H.
,
Tomoki
,
T.
,
Ryozo
,
T.
,
Masanori
,
R.
, and
Masahide
,
K.
,
2018
, “
Application of Conjugate Heat Transfer Analysis to Improvement of Cooled Turbine Vane and Blade for Industrial Gas Turbine
,”
ASME Paper No. GT2018-75669
.
24.
Ling
,
J. P. C. W.
,
Ireland
,
P. T.
, and
Harvey
,
N. W.
,
2006
, “
Measurement of Heat Transfer Coefficient Distributions and Flow Field in a Model of a Turbine Blade Cooling Passage With Tangential Injection
,”
ASME Paper No. GT2006-90352
.
25.
Liu
,
Z
,
Li
,
J.
, and
Feng
,
Z.
,
2015
, “
Numerical Study of Swirl Cooling in a Turbine Blade Leading-Edge Model
,”
J. Thermophys. Heat Transfer
,
29
(
1
), pp.
166
178
.
26.
Du
,
C. H.
,
Li
,
L.
,
Wu
,
X.
, and
Feng
,
Z. P.
,
2016
, “
Effect of Jet Nozzle Geometry on Flow and Heat Transfer Performance of Vortex Cooling for Gas Turbine Blade Leading Edge
,”
Appl. Therm. Eng.
,
93
, pp.
1020
1032
.
27.
Xing
,
Y. F.
,
Spring
,
S.
, and
Weigand
,
B.
,
2010
, “
Experimental and Numerical Investigation of Heat Transfer Characteristics of Inline and Staggered Arrays of Impinging Jets
,”
J. Heat Transfer
,
132
(
9
), pp.
53
58
.
28.
Liu
,
Z.
, and
Feng
,
Z. P.
,
2011
, “
Numerical Simulation on the Effect of Jet Nozzle Position on the Impingement Cooling of Gas Turbine Blade Leading Edge
,”
Int. J. Heat Mass Transfer
,
54
(
23–24
), pp.
4949
4959
.
29.
Spring
,
S.
,
Weigand
,
B.
,
Krebs
,
W.
, and
Hase
,
M.
,
2006
, “
CFD Heat Transfer Predictions of a Single Circular Jet Impinging With Crossflow
,”
AIAA Paper No. 2006-3589
.
30.
Kumar
,
B. V. N. R.
, and
Prasad
,
B. V. S. S. S.
,
2008
, “
Computational Flow and Heat Transfer of a Row of Circular Jets Impinging on a Concave Surface
,”
Heat Mass Transfer
,
44
(
6
), pp.
667
678
.
You do not currently have access to this content.