Abstract

Wall temperature measurements with fiber coupled online phosphor thermometry were, for the first time, successfully performed in a full-scale H-class Siemens gas turbine combustor. Online wall temperatures were obtained during high-pressure combustion tests up to 8 bar at the Siemens Clean Energy Center (CEC) test facility. Since optical access to the combustion chamber with fibers being able to provide high laser energies is extremely challenging, we developed a custom-built measurement system consisting of a water-cooled fiber optic probe and a mobile measurement container. A suitable combination of chemical binder and thermographic phosphor was identified for temperatures up to 1800 K on combustor walls coated with a thermal barrier coating (TBC). To our knowledge, these are the first measurements reported with fiber coupled online phosphor thermometry in a full-scale high-pressure gas turbine combustor. Details of the setup and the measurement procedures will be presented. The measured signals were influenced by strong background emissions probably from CO*2 chemiluminescence. Strategies for correcting background emissions and data evaluation procedures are discussed. The presented measurement technique enables the detailed study of combustor wall temperatures and using this information an optimization of the gas turbine cooling design.

References

1.
Kerr
,
C.
, and
Ivey
,
P.
,
2002
, “
An Overview of the Measurement Errors Associated With Gas Turbine Aeroengine Pyrometer Systems
,”
Meas. Sci. Technol.
,
13
(
6
), p.
873
. 10.1088/0957-0233/13/6/307
2.
Lempereur
,
C.
,
Andral
,
R.
, and
Prudhomme
,
J. Y.
,
2008
, “
Surface Temperature Measurement on Engine Components by Means of Irreversible Thermal Coatings
,”
Meas. Sci. Technol.
,
19
(
10
), p.
105501
. 10.1088/0957-0233/19/10/105501
3.
Allison
,
S. W.
, and
Gillies
,
G. T.
,
1997
, “
Remote Thermometry With Thermographic Phosphors: Instrumentation and Applications
,”
Rev. Sci. Instrum.
,
68
(
7
), pp.
2615
2650
. 10.1063/1.1148174
4.
Chambers
,
M.
, and
Clarke
,
D.
,
2009
, “
Doped Oxides for High-Temperature Luminescence and Lifetime Thermometry
,”
Annu. Rev. Mater. Res.
,
39
(
1
), pp.
325
359
. 10.1146/annurev-matsci-112408-125237
5.
Aldén
,
M.
,
Omrane
,
A.
,
Richter
,
M.
, and
Särner
,
G.
,
2011
, “
Thermographic Phosphors for Thermometry: A Survey of Combustion Applications
,”
Prog. Energ. Comb. Sci.
,
37
(
4
), pp.
422
461
. 10.1016/j.pecs.2010.07.001
6.
Brübach
,
J.
,
Pflitsch
,
C.
,
Dreizler
,
A.
, and
Atakan
,
B.
,
2013
, “
On Surface Temperature Measurements With Thermographic Phosphors: A Review
,”
Prog. Energ. Comb. Sci.
,
39
(
1
), pp.
37
60
. 10.1016/j.pecs.2012.06.001
7.
Araguás Rodríguez
,
S.
,
Jelínek
,
T.
,
Michálek
,
J.
,
Pilgrim
,
C. C.
,
Feist
,
J. P.
, and
Skinner
,
S. J.
,
2017
, “
Accelerated Thermal Profiling of Gas Turbine Components Using Luminescent Thermal History Paints
,”
Proceedings of the 1st Global Power and Propulsion Forum, GPPF 2017
,
Zurich, Switzerland
,
Jan. 16–18
.
8.
Heyes
,
A. L.
,
Seefeldt
,
S.
, and
Feist
,
J. P.
,
2006
, “
Two-Colour Phosphor Thermometry for Surface Temperature Measurement
,”
Opt. Laser Technol.
,
38
(
4–6
), pp.
257
265
. 10.1016/j.optlastec.2005.06.012
9.
Fuhrmann
,
N.
,
Brübach
,
J.
, and
Dreizler
,
A.
,
2013
, “
Phosphor Thermometry: A Comparison of the Luminescence Lifetime and the Intensity Ratio Approach
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3611
3618
. 10.1016/j.proci.2012.06.084
10.
Eldridge
,
J. I.
,
Allison
,
S. W.
,
Jenkins
,
T. P.
,
Gollub
,
S. L.
,
Hall
,
C. A.
, and
Walker
,
D. G.
,
2016
, “
Surface Temperature Measurements From a Stator Vane Doublet in a Turbine Afterburner Flame Using a YAG:Tm Thermographic Phosphor
,”
Meas. Sci. Technol.
,
27
(
12
), p.
125205
. 10.1088/0957-0233/27/12/125205
11.
Eldridge
,
I. J.
,
2018
, “
Single Fiber Temperature Probe Configuration Using Anti-Stokes Luminescence From Cr:GdAIO3
,”
Meas. Sci. Technol.
,
29
(
6
), p.
065206
. 10.1088/1361-6501/aaba21
12.
Nau
,
P.
,
Yin
,
Z.
,
Lammel
,
O.
, and
Meier
,
W.
,
2018
, “
Wall Temperature Measurements in Gas Turbine Combustors With Thermographic Phosphors
,”
J. Eng. Gas Turb. Power
,
141
(
4
), p.
041021
. 10.1115/1.4040716
13.
Brübach
,
J.
,
Janicka
,
J.
, and
Dreizler
,
A.
,
2009
, “
An Algorithm for the Characterisation of Multi-Exponential Decay Curves
,”
Opt. Lasers Eng.
,
47
(
1
), pp.
75
79
. 10.1016/j.optlaseng.2008.07.015
14.
Guethe
,
F.
,
Guyot
,
D.
,
Singla
,
G.
,
Noiray
,
N.
, and
Schuermans
,
B.
,
2012
, “
Chemiluminescence as Diagnostic Tool in the Development of Gas Turbines
,”
Appl. Phys. B
,
107
(
3
), pp.
619
636
. 10.1007/s00340-012-4984-y
15.
Goers
,
S.
,
Witzel
,
B.
,
Heinze
,
J.
,
Stockhausen
,
G.
,
van Kampen
,
J.
,
Schulz
,
C.
,
Willert
,
C.
, and
Fleing
,
C.
,
2014
, “
Endoscopic Chemiluminescence Measurements as a Robust Experimental Tool in High-Pressure Gas Turbine Combustion Tests
,”
Proceedings of ASME Turbo Expo 2014
,
Düsseldorf, Germany
,
June 16–20
.
16.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
, “
GRI-Mech 3.0
,” http://combustion.berkeley.edu/gri-mech/
You do not currently have access to this content.