The performance of a showerhead arrangement of film cooling in the leading edge region of a first-stage nozzle guide vane was experimentally and numerically evaluated. A six-vane linear cascade was tested at an isentropic exit Mach number of Ma2s = 0.42, with a high inlet turbulence intensity level of 9%. The showerhead cooling scheme consists of four staggered rows of cylindrical holes evenly distributed around the stagnation line, angled at 45 deg toward the tip. The blowing ratios tested are BR = 2.0, 3.0, and 4.0. Adiabatic film cooling effectiveness distributions on the vane surface around the leading edge region were measured by means of thermochromic liquid crystals (TLC) technique. Since the experimental contours of adiabatic effectiveness showed that there is no periodicity across the span, the computational fluid dynamics (CFD) calculations were conducted by simulating the whole vane. Within the Reynolds-averaged Navier–Stokes (RANS) framework, the very widely used realizable k–ε (Rke) and the shear stress transport k–ω (SST) turbulence models were chosen for simulating the effect of the BR on the surface distribution of adiabatic effectiveness. The turbulence model which provided the most accurate steady prediction, i.e., Rke, was selected for running detached eddy simulation (DES) at the intermediate value of BR = 3. Fluctuations of the local temperature were computed by DES, due to the vortex structures within the shear layers between the main flow and the coolant jets. Moreover, mixing was enhanced both in the wall-normal and spanwise directions, compared to RANS modeling. DES roughly halved the prediction error of laterally averaged film cooling effectiveness on the suction side of the leading edge. However, neither DES nor RANS provided the expected decay of effectiveness progressing downstream along the pressure side, with 15% overestimation of ηav at s/C = 0.2.

References

1.
Dick
,
E.
,
2015
,
Fundamentals of Turbomachines
,
Springer
,
Dordrecht, The Netherlands
.
2.
Cunha
,
F. J.
,
2006
, “
Heat Transfer Analysis
,”
The Gas Turbine Handbook
,
NETL
,
DOE, Morgantown, WV
, Chap. 4.4.
3.
Bogard
,
D. G.
,
2006
, “
Airfoil Film Cooling
,”
The Gas Turbine Handbook
,
NETL
,
DOE, Morgantown, WV
, Chap. 4.2.2.1.
4.
Wadia
,
A. R.
, and
Nealy
,
D. A.
,
1985
, “
Development of a Design Model for Airfoil Leading Edge Film Cooling
,”
ASME
Paper No. 85-GT-120.
5.
Reiss
,
H.
, and
Bolcs
,
A.
,
2000
, “
Experimental Study of Showerhead Cooling on a Cylinder Comparing Several Configurations Using Cylindrical and Shaped Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
161
169
.
6.
Cruse
,
M. W.
,
Yuki
,
U. M.
, and
Bogard
,
D. G.
,
1997
, “
Investigation of Various Parametric Influences on Leading Edge Film Cooling
,”
ASME
Paper No. 97-GT-296.
7.
Albert
,
J. A.
,
Bogard
,
D. G.
, and
Cunha
,
F.
,
2004
, “
Adiabatic and Overall Effectiveness for a Film Cooled Blade
,”
ASME
Paper No. GT2004-53998.
8.
Polanka
,
M. D.
,
Witteveld
,
V. C.
, and
Bogard
,
D. G.
,
1999
, “
Film Cooling Effectiveness in the Showerhead Region of a Gas Turbine Vane—Part I: Stagnation Region and Near Pressure Side
,”
ASME
Paper No. 99-GT-48.
9.
Witteveld
,
V. C.
,
Polanka
,
M. D.
, and
Bogard
,
D. G.
,
1999
, “
Film Cooling Effectiveness in the Showerhead Region of a Gas Turbine Vane—Part II: Stagnation Region and Near Suction Side
,”
ASME
Paper No. 99-GT-49.
10.
Nasir
,
S.
,
Bolchoz
,
T.
,
Ng
,
W. F.
,
Zhang
,
L. J.
,
Moon
,
H. K.
, and
Anthony
,
R. J.
,
2012
, “
Showerhead Film Cooling Performance of a Turbine Vane at High Freestream Turbulence in a Transonic Cascade
,”
ASME J. Turbomach.
,
134
(
5
), p.
051021
.
11.
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
,
2002
, “
Thermal Field and Flow Visualization Within the Stagnation Region of a Film Cooled Turbine Vane
,”
ASME J. Turbomach.
,
124
(
2
), pp.
200
206
.
12.
Nathan
,
M. L.
,
Dyson
,
T. E.
,
Bogard
,
D. G.
, and
Bradshaw
,
S. D.
,
2013
, “
Adiabatic and Overall Effectiveness for the Showerhead Film Cooling of a Turbine Vane
,”
ASME J. Turbomach.
,
136
(
3
), p.
031005
.
13.
Polanka
,
M. D.
,
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
,
2002
, “
Three Component Velocity Field Measurements in the Stagnation Region of a Film Cooled Turbine Vane
,”
ASME J. Turbomach.
,
124
(
3
), pp.
445
452
.
14.
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
,
2002
, “
Evaluation of Pressure Side Film Cooling With Flow and Thermal Field Measurements—Part I: Showerhead Effects
,”
ASME J. Turbomach.
,
124
(
4
), pp.
670
677
.
15.
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
,
2002
, “
Evaluation of Pressure Side Film Cooling With Flow and Thermal Field Measurements—Part II: Turbulence Effects
,”
ASME J. Turbomach.
,
124
(
4
), pp.
678
685
.
16.
Fawcett
,
R. J.
,
Wheeler
,
A. P. S.
,
He
,
L.
, and
Taylor
,
R.
,
2012
, “
Experimental Investigation Into Unsteady Effects on Film Cooling
,”
ASME J. Turbomach.
,
134
(
2
), p.
021015
.
17.
Heidmann
,
J. D.
,
Rigby
,
D. L.
, and
Ameri
,
A. A.
,
1999
, “
A Three-Dimensional Coupled Internal/External Simulation of a Film-Cooled Turbine Vane
,”
ASME J. Turbomach.
,
122
(
2
), pp.
348
359
.
18.
Dyson
,
T. E.
,
Bogard
,
D. G.
, and
Bradshaw
,
S. D.
,
2012
, “
Evaluation of CFD Simulations of Film Cooling Performance in the Showerhead Region of a Turbine Vane Including Conjugate Effects
,”
ASME
Paper No. IMECE2012-88386.
19.
Wu
,
H.
,
Nasir
,
S.
,
Ng
,
W. F.
, and
Moon
,
H. K.
,
2008
, “
Showerhead Film Cooling Performance of a Transonic Turbine Vane at High Freestream Turbulence (Tu = 16%): 3-D CFD and Comparison With Experiment
,”
ASME
Paper No. IMECE2008-67782.
20.
Acharya
,
S.
,
Tyagi
,
M.
, and
Hoda
,
A.
,
2001
, “
Flow and Heat Transfer Predictions for Film Cooling, Heat Transfer in Gas Turbine Systems
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
110
125
.
21.
Nemdili
,
F.
,
Azzi
,
A.
,
Theodoridis
,
G.
, and
Jubran
,
B. A.
,
2008
, “
Reynolds Stress Transport Modeling of Film Cooling at the Leading Edge of a Symmetrical Turbine Blade Model
,”
Heat Transfer Eng.
,
29
(
11
), pp.
950
960
.
22.
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2014
, “
Film Cooling Modeling of Turbine Blades Using Algebraic Anisotropic Turbulence Models
,”
ASME J. Turbomach.
,
136
(
11
), p.
111006
.
23.
Rozati
,
A.
, and
Tafti
,
D. K.
,
2008
, “
Large-Eddy Simulations of Leading Edge Film Cooling: Analysis of Flow Structures, Effectiveness and Heat Transfer
,”
Int. J. Heat Fluid Flow
,
29
(
1
), pp.
1
17
.
24.
Rozati
,
A.
, and
Tafti
,
D. K.
,
2008
, “
Effect of Coolant-Mainstream Blowing Ratio on Leading Edge Film Cooling Flow and Heat Transfer—LES Investigation
,”
Int. J. Heat Fluid Flow
,
29
(
4
), pp.
857
873
.
25.
Takahashi
,
T.
,
Funazaki
,
K.
,
Salleh
,
H. B.
,
Sakai
,
E.
, and
Watanabe
,
K.
,
2011
, “
Assessment of URANS and DES for Predictions of Leading Edge Film Cooling
,”
ASME J. Turbomach.
,
134
(
3
), p.
031008
.
26.
Funazaki
,
K.
,
Kawabata
,
H.
,
Takahashi
,
D.
, and
Okita
,
Y.
,
2012
, “
Experimental and Numerical Studies on Leading Edge Film Cooling Performance: Effects of Hole Exit Shape and Freestream Turbulence
,”
ASME
Paper No. GT2012-68217.
27.
Liang
,
J. Y.
, and
Kang
,
S.
,
2012
, “
Investigation of Film Cooling on the Leading Edge of Turbine Blade Based on Detached Eddy Simulation
,”
Sci. China Technol. Sci.
,
55
(
8
), pp.
2191
2198
.
28.
Barigozzi
,
G.
, and
Ravelli
,
S.
,
2015
, “
Combined Experimental and Numerical Study of Showerhead Film Cooling in a Linear Nozzle Vane Cascade
,”
ASME
Paper No. GT2015-42397.
29.
ANSYS
,
2009
, “
ANSYS FLUENT 12 User Guide
,” ANSYS, Canonsburg, PA.
30.
Mathew
,
S.
,
Ravelli
,
S.
, and
Bogard
,
D. G.
,
2012
, “
Evaluation of CFD Predictions Using Thermal Field Measurements on a Simulated Film Cooled Turbine Blade Leading Edge
,”
ASME J. Turbomach.
,
135
(
1
), p.
011021
.
31.
Spalart
,
P. R.
,
Jou
,
W.-H.
,
Strelets
,
M.
, and
Allmaras
,
S. R.
,
1997
, “
Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach, Advances in DNS/LES
,” First
AFOSR
International Conference on DNS/LES
, Ruston, LA, pp.
137
147
.https://www.researchgate.net/profile/Michael_Strelets/publication/236888805_Comments_on_the_Feasability_of_LES_for_Wings_and_on_a_Hybrid_RANSLES_Approach/links/0c9605232f307402e8000000.pdf
32.
Menter
,
F. R.
,
2012
, “
Best Practice: Scale-Resolving Simulations in ANSYS CFD
,” Version 1.0,
ANSYS
,
Canonsburg, PA
.
33.
Menter
,
F. R.
,
Schütze
,
J.
,
Kurbatskii
,
K. A.
,
Gritskevich
,
M. S.
, and
Garbaruk
,
A.
,
2011
, “
Scale-Resolving Simulation Techniques in Industrial CFD
,”
AIAA
Paper No. 2011-3474.
34.
Jansohn
,
P.
,
2013
,
Modern Gas Turbine Systems
,
Woodhead Publishing
,
Philadelphia, PA
.
35.
Durrani
,
N.
, and
Qin
,
N.
,
2011
, “
Comparison of RANS, DES and DDES Results for ONERA M-6 Wing at Transonic Flow Speed Using an In-House Parallel Code
,”
AIAA
Paper No. 2011-190.
36.
Sreedharan
,
S. S.
, and
Tafti
,
D. K.
,
2008
, “
Large Eddy Simulations of a Three-Row Leading Edge Film Cooling Geometry
,”
ASME
Paper No. IMECE2008-67019.
37.
Foroutan
,
H.
, and
Yavuzkurt
,
S.
,
2015
, “
Numerical Simulations of the Near-Field Region of Film Cooling Jets Under High Free Stream Turbulence: Application of RANS and Hybrid URANS/Large Eddy Simulation Models
,”
ASME J. Heat Transfer
,
137
(
1
), p.
011701
.
You do not currently have access to this content.