Knowing the heat transfer coefficient augmentation is imperative to predicting film cooling performance on turbine components. In the past, heat transfer coefficient augmentation was generally measured at unit density ratio to keep measurements simple and uncertainty low. Some researchers have measured heat transfer coefficient augmentation while taking density ratio effects into account, but none have made direct temperature measurements of the wall and adiabatic wall to calculate hf/h0 at higher density ratios. This work presents results from measuring the heat transfer coefficient augmentation downstream of shaped holes with a 7 deg forward and lateral expansion at DR = 1.0, 1.2, and 1.5 on a flat plate using a constant heat flux surface. The results showed that the heat transfer coefficient augmentation was low while the jets were attached to the surface and increased when the jets started to separate. At DR = 1.0, hf/h0 was higher for a given blowing ratio than at DR = 1.2 and DR = 1.5. However, when velocity ratios are matched, better correspondence was found at the different density ratios. Surface contours of hf/h0 showed that the heat transfer was initially increased along the centerline of the jet, but was reduced along the centerline at distances farther downstream. The decrease along the centerline may be due to counter-rotating vortices sweeping warm air next to the heat flux plate toward the center of the jet, where they sweep upward and thicken the thermal boundary layer. This warming of the core of the coolant jet over the heated surface was confirmed with thermal field measurements.

References

1.
Eckert
,
E. R. G.
,
1970
, “
Gas-to-Gas Film Cooling
,”
Inzhenergno-Fiz. Zh.
,
19
(
3
), pp.
426
440
.
2.
Eckert
,
E. R. G.
,
1984
, “
Analysis of Film Cooling and Full-Coverage Film Cooling of Gas Turbine Blades
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
206
213
.
3.
Sen
,
B.
,
Schmidt
,
D. L.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Holes: Heat Transfer
,”
ASME J. Turbomach.
,
118
(
4
), pp.
800
806
.
4.
Goldstein
,
R. J.
,
Jin
,
P.
, and
Olson
,
R. L.
,
1999
, “
Film Cooling Effectiveness and Mass/Heat Transfer Coefficient Downstream of One Row of Discrete Holes
,”
ASME J. Turbomach.
,
121
(
2
), pp.
225
232
.
5.
Eriksen
,
V. L.
, and
Goldstein
,
R. J.
,
1974
, “
Heat Transfer and Film Cooling Following Injection Through Inclined Circular Tubes
,”
ASME J. Heat Transfer
,
96
(
2
), pp.
239
245
.
6.
Yu
,
Y.
,
Gogineni
,
S.
,
Yen
,
C.-H.
,
Shih
,
T. I.-P.
, and
Chyu
,
M. K.
,
2002
, “
Film Cooling Effectiveness and Heat Transfer Coefficient Distributions Around Diffusion Shaped Holes
,”
ASME J. Heat Transfer
,
124
(
5
), pp.
820
827
.
7.
Baldauf
,
S.
,
Scheurlen
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2002
, “
Heat Flux Reduction From Film Cooling and Correlation of Heat Transfer Coefficients From Thermographic Measurements at Enginelike Conditions
,”
ASME J. Turbomach.
,
124
(
4
), pp.
699
709
.
8.
Ammari
,
H. D.
,
Hay
,
N.
, and
Lampard
,
D.
,
1990
, “
The Effect of Density Ratio on the Heat Transfer Coefficient From a Film-Cooled Flat Plate
,”
ASME J. Turbomach.
,
112
(
3
), pp.
444
450
.
9.
Ekkad
,
S. V.
,
Zapata
,
D.
, and
Han
,
J. C.
,
1997
, “
Heat Transfer Coefficients Over a Flat Surface With Air and CO2 Injection Through Compound Angle Holes Using a Transient Liquid Crystal Image Method
,”
ASME J. Turbomach.
,
119
(
3
), pp.
580
586
.
10.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Free-Stream Effects on the Cooling Performance of Cylindrical and Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
6
), p.
061007
.
11.
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2003
, “
Free-Stream Turbulence Effects on Film Cooling With Shaped Holes
,”
ASME J. Turbomach.
,
125
(
1
), pp.
65
73
.
12.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2000
, “
Film-Cooling Holes With Expanded Exits: Near-Hole Heat Transfer Coefficients
,”
Int. J. Heat Fluid Flow
,
21
(
2
), pp.
146
155
.
13.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2014
, “
Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole
,”
ASME
Paper No. GT2014-25992.
14.
Moffat
,
R.
,
1985
, “
Using Uncertainty Analysis in the Planning of an Experiment
,”
ASME J. Fluids Eng.
107
(
2
), pp.
173
178
.
You do not currently have access to this content.