This paper presents the capability of iterative learning active flow control to decrease the impact of periodic disturbances in an experimental compressor stator cascade with sidewall actuation. The periodic disturbances of the individual passage flows are generated by a damper flap device that is located downstream of the trailing edges of the blades. The device mimics the throttling effect of periodically closed combustion tubes in a pulsed detonation engine (PDE). For the purpose of rejecting this disturbance, the passage flow is manipulated by fluidic actuators that introduce an adjustable amount of pressurized air through slots in the sidewalls of the cascade. Pressure sensors that are mounted flush to the suction surface of the middle blade provide information on the current flow situation. These data are fed back in real-time to an optimization-based iterative learning controller (ILC). By learning from period to period, the controller modifies the actuation amplitude such that, eventually, a control command trajectory is calculated that reduces the impact of the periodic disturbance on the flow in an optimal manner.

References

1.
Roy
,
G.
,
Frolov
,
S.
,
Borisov
,
A.
, and
Netzer
,
D.
,
2004
, “
Pulse Detonation Propulsion: Challenges, Current Status, and Future Perspective
,”
Prog. Energy Combust. Sci.
,
30
(
6
), pp.
545
672
.
2.
Kailasanath
,
K.
,
2003
, “
Recent Developments in the Research on Pulse Detonation Engines
,”
AIAA J.
,
41
(
2
), pp.
145
159
.
3.
Coleman
,
M. L.
,
2001
, “
Overview of Pulse Detonation Propulsion Technology
,” Chemical Propulsion Information Agency, Columbia, MD, Technical Report No. CPTR 70.
4.
King
,
R.
, ed.,
2006
,
Active Flow Control
(Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol.
95
),
Springer
,
Heidelberg
.
5.
King
,
R.
, ed.,
2010
,
Active Flow Control II
(Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol.
108
),
Springer
,
Heidelberg
.
6.
King
,
R.
, ed.,
2014
,
Active Flow and Combustion Control 2014
(Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol.
127
),
Springer International Publishing
,
Cham, Switzerland
.
7.
Staats
,
M.
,
Nitsche
,
W.
, and
Peltzer
,
I.
,
2014
, “
Active Flow Control on a Highly Loaded Compressor Cascade With Non-Steady Boundary Conditions
,”
Active Flow and Combustion Control 2014
(Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol.
127
),
R.
King
, ed.,
Springer International Publishing
,
Cham, Switzerland
, pp.
23
38
.
8.
Hecklau
,
M.
,
Wiederhold
,
O.
,
Zander
,
V.
,
King
,
R.
,
Nitsche
,
W.
,
Huppertz
,
A.
, and
Swoboda
,
M.
,
2011
, “
Active Separation Control With Pulsed Jets in a Critically Loaded Compressor Cascade
,”
AIAA J.
,
49
(
8
), pp.
1729
1740
.
9.
Zander
,
V.
,
Hecklau
,
M.
,
Nitsche
,
W.
,
Huppertz
,
A.
, and
Swoboda
,
M.
,
2011
, “
Active Flow Control by Means of Synthetic Jets on a Highly Loaded Compressor Cascade
,”
Proc. Inst. Mech. Eng., Part A
,
225
(
7
), pp.
897
906
.
10.
Bristow
,
D. A.
,
Tharayil
,
M.
, and
Alleyne
,
A. G.
,
2006
, “
A Survey of Iterative Learning Control
,”
IEEE Control Syst.
,
26
(
3
), pp.
96
114
.
11.
Longman
,
R. W.
,
2000
, “
Iterative Learning Control and Repetitive Control for Engineering Practice
,”
Int. J. Control
,
73
(
10
), pp.
930
954
.
12.
Wang
,
Y.
,
Gao
,
F.
, and
Doyle
,
F. J.
, III
,
2009
, “
Survey on Iterative Learning Control, Repetitive Control, and Run-to-Run Control
,”
J. Process Control
,
19
(
10
), pp.
1589
1600
.
13.
Gunnarsson
,
S.
, and
Norrlöf
,
M.
,
2001
, “
On the Design of ILC Algorithms Using Optimization
,”
Automatica
,
37
(
12
), pp.
2011
2016
.
14.
Norrlöf
,
M.
,
2000
, “
Iterative Learning Control, Analysis, Design, and Experiments
,” Ph.D. thesis, Linköping University, Linköping, Sweden.
15.
Amann
,
N.
,
Owens
,
D. H.
, and
Rogers
,
E.
,
1996
, “
Iterative Learning Control for Discrete-Time Systems With Exponential Rate of Convergence
,”
IEEE Proc. Control Theory Appl.
,
143
(
2
), pp.
217
224
.
16.
Hecklau
,
M.
,
Zander
,
V.
,
Peltzer
,
I.
,
Nitsche
,
W.
,
Huppertz
,
A.
, and
Swoboda
,
M.
,
2010
, “
Experimental AFC Approaches on a Highly Loaded Compressor Cascade
,”
Active Flow Control II
(Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol.
108
),
R.
King
, ed.,
Springer
,
Heidelberg
, pp.
171
189
.
17.
Isidori
,
A.
,
2001
,
Nonlinear Control Systems
, 3rd ed.,
Springer
,
Berlin
.
18.
Staats
,
M.
, and
Nitsche
,
W.
,
2015
, “
Active Control of the Corner Separation on a Highly Loaded Compressor Cascade With Periodic Non-Steady Boundary Conditions by Means of Fluidic Actuators
,”
ASME
Paper No. GT2015-42161.
19.
Jackson
,
J. E.
,
1991
,
A User's Guide to Principal Components
,
Wiley
,
New York
.
20.
Steinberg
,
S. J.
,
Staats
,
M.
,
Nitsche
,
W.
, and
King
,
R.
,
2014
, “
Comparison of Iterative Learning and Repetitive Control Applied to a Compressor Stator Cascade
,”
Active Flow and Combustion Control 2014
(Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol.
127
),
R.
King
, ed.,
Springer International Publishing
,
Cham, Switzerland
, pp.
39
53
.
21.
Steinberg
,
S. J.
,
Tiedemann
,
C.
,
King
,
R.
, and
Peitsch
,
D.
,
2013
, “
Identification of Surrogate Control Variables for a Robust Active Flow Controller of an Experimental High Speed Stator Cascade
,”
ASME
Paper No. GT2013-94179.
22.
Ljung
,
L.
,
1999
,
System Identification: Theory for the User
, 2nd ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.