Replacing natural gas fuels with coal-derived syngas in industrial gas turbines can lead to molten particle deposition on the turbine components. The deposition of the particles, which originate from impurities in the syngas fuels, can increase surface roughness and obstruct film cooling holes. These deposition effects increase heat transfer to the components and degrade the performance of cooling mechanisms, which are critical for maintaining component life. The current experimental study dynamically simulated molten particle deposition on a conducting blade endwall with the injection of molten wax. The key nondimensional parameters for modeling of conjugate heat transfer and deposition were replicated in the experiment. The endwall was cooled with internal impingement jet cooling and film cooling. Increasing blowing ratio mitigated some deposition at the film cooling hole exits and in areas of coolest endwall temperatures. After deposition, the external surface temperatures and internal endwall temperatures were measured and found to be warmer than the endwall temperatures measured before deposition. Although the deposition helps insulate the endwall from the mainstream, the roughness effects of the deposition counteract the insulating effect by decreasing the benefit of film cooling and by increasing external heat transfer coefficients.

References

1.
Ai
,
W.
,
Murray
,
N.
,
Fletcher
,
T. H.
,
Harding
,
S.
,
Lewis
,
S.
, and
Bons
,
J. P.
,
2012
, “
Deposition Near Film Cooling Holes on a High Pressure Turbine Vane
,”
ASME J. Turbomach.
,
134
(
4
), p.
041013
.
2.
Webb
,
J.
,
Casaday
,
B.
,
Barker
,
B.
,
Bons
,
J. P.
,
Gledhill
,
A. D.
, and
Padture
,
N. P.
,
2012
, “
Coal Ash Deposition on Nozzle Guide Vanes—Part I: Experimental Characteristics of Four Coal Ash Types
,”
ASME J. Turbomach.
,
135
(
2
), p.
021033
.
3.
Casaday
,
B.
,
Prenter
,
R.
,
Bonilla
,
C.
,
Lawrence
,
M.
,
Clum
,
C.
,
Ameri
,
A. A.
, and
Bons
,
J. P.
,
2013
, “
Deposition With Hot Streaks in an Uncooled Turbine Vane Passage
,”
ASME J. Turbomach.
,
136
(
4
), p.
041017
.
4.
Lawson
,
S. A.
, and
Thole
,
K. A.
,
2011
, “
Effects of Simulated Particle Deposition on Film Cooling
,”
ASME J. Turbomach.
,
133
(
2
), p.
021009
.
5.
Lawson
,
S. A.
, and
Thole
,
K. A.
,
2012
, “
Simulations of Multiphase Particle Deposition on Endwall Film-Cooling
,”
ASME J. Turbomach.
,
134
(
1
), p.
011003
.
6.
Lawson
,
S. A.
,
Lynch
,
S. P.
, and
Thole
,
K. A.
,
2013
, “
Simulations of Multiphase Particle Deposition on a Nonaxisymmetric Contoured Endwall With Film-Cooling
,”
ASME J. Turbomach.
,
135
(
3
), p.
031032
.
7.
Albert
,
J. E.
, and
Bogard
,
D. G.
,
2012
, “
Experimental Simulation of Contaminant Deposition on a Film Cooled Turbine Airfoil Leading Edge
,”
ASME J. Turbomach.
,
134
(
5
), p.
051014
.
8.
Albert
,
J. E.
, and
Bogard
,
D. G.
,
2013
, “
Experimental Simulation of Contaminant Deposition on a Film-Cooled Turbine Vane Pressure Side With a Trench
,”
ASME J. Turbomach.
,
135
(
5
), p.
051008
.
9.
Davidson
,
F. T.
,
Kistenmacher
,
D. A.
, and
Bogard
,
D. G.
,
2014
, “
A Study of Deposition on a Turbine Vane With a Thermal Barrier Coating and Various Film Cooling Geometries
,”
ASME J. Turbomach.
,
136
(
4
), p.
041009
.
10.
Kistenmacher
,
D. A.
,
Davidson
,
F. T.
, and
Bogard
,
D. G.
,
2014
, “
Realistic Trench Film Cooling With a Thermal Barrier Coating and Deposition
,”
ASME J. Turbomach.
,
136
(
9
), p.
091002
.
11.
Lawson
,
S. A.
, and
Thole
,
K. A.
,
2012
, “
Simulations of Multiphase Particle Deposition on Endwall Film-Cooling Holes in Transverse Trenches
,”
ASME J. Turbomach.
,
134
(
5
), p.
051040
.
12.
Albert
,
J. E.
,
Bogard
,
D. G.
, and
Cunha
,
F.
,
2004
, “
Adiabatic and Overall Effectiveness for a Film Cooled Blade
,”
ASME
Paper No. GT2004-53998.
13.
Casaday
,
B.
,
Ameri
,
A.
, and
Bons
,
J. P.
,
2012
, “
Numerical Investigation of Ash Deposition on Nozzle Guide Vane Endwalls
,”
ASME
Paper No. GT2012-68923.
14.
Kang
,
M. B.
, and
Thole
,
K. A.
,
2000
, “
Flowfield Measurements in the Endwall Region of a Stator Vane
,”
ASME J. Turbomach.
,
122
(
3
), pp.
458
466
.
15.
Lynch
,
S. P.
,
Thole
,
K. A.
,
Kohli
,
A.
, and
Lehane
,
C.
,
2011
, “
Computational Predictions of Heat Transfer and Film-Cooling for a Turbine Blade With Nonaxisymmetric Endwall Contouring
,”
ASME J. Turbomach.
,
133
(
4
), p.
041003
.
16.
Mensch
,
A.
, and
Thole
,
K. A.
,
2014
, “
Overall Effectiveness of a Blade Endwall With Jet Impingement and Film Cooling
,”
ASME J. Eng. Gas Turbines Power
,
136
(
3
), p.
031901
.
17.
Williams
,
R. P.
,
Dyson
,
T. E.
,
Bogard
,
D. G.
, and
Bradshaw
,
S. D.
,
2014
, “
Sensitivity of the Overall Effectiveness to Film Cooling and Internal Cooling on a Turbine Vane Suction Side
,”
ASME J. Turbomach.
,
136
(
3
), p.
031006
.
18.
Lynch
,
S. P.
,
Thole
,
K. A.
,
Kohli
,
A.
, and
Lehane
,
C.
,
2011
, “
Heat Transfer for a Turbine Blade With Nonaxisymmetric Endwall Contouring
,”
ASME J. Turbomach.
,
133
(
1
), p.
011019
.
19.
Hollworth
,
B. R.
, and
Dagan
,
L.
,
1980
, “
Arrays of Impinging Jets With Spent Fluid Removal Through Vent Holes on the Target Surface—Part 1: Average Heat Transfer
,”
ASME J. Eng. Gas Turbines Power
,
102
(
4
), pp.
994
999
.
20.
Richards
,
G. A.
,
Logan
,
R. G.
,
Meyer
,
C. T.
, and
Anderson
,
R. J.
,
1992
, “
Ash Deposition at Coal-Fired Gas Turbine Conditions: Surface and Combustion Temperature Effects
,”
ASME J. Eng. Gas Turbines Power
,
114
(
1
), pp.
132
138
.
21.
Rezaei
,
H. R.
,
Gupta
,
R. P.
,
Bryant
,
G. W.
,
Hart
,
J. T.
,
Liu
,
G. S.
,
Bailey
,
C. W.
,
Wall
,
T. F.
,
Miyamae
,
S.
,
Makino
,
K.
, and
Endo
,
Y.
,
2000
, “
Thermal Conductivity of Coal Ash and Slags and Models Used
,”
Fuel
,
79
(
13
), pp.
1697
1710
.
22.
Bons
,
J. P.
,
Crosby
,
J.
,
Wammack
,
J. E.
,
Bentley
,
B. I.
, and
Fletcher
,
T. H.
,
2007
, “
High-Pressure Turbine Deposition in Land-Based Gas Turbines From Various Synfuels
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
135
143
.
23.
Wang
,
Q.
,
Tian
,
S.
,
Wang
,
Q.
,
Huang
,
Q.
, and
Yang
,
J.
,
2008
, “
Melting Characteristics During the Vitrification of MSWI Fly Ash With a Pilot-Scale Diesel Oil Furnace
,”
J. Hazard. Mater.
,
160
(
2–3
), pp.
376
381
.
24.
Li
,
R.
,
Wang
,
L.
,
Yang
,
T.
, and
Raninger
,
B.
,
2007
, “
Investigation of MSWI Fly Ash Melting Characteristic by DSC–DTA
,”
Waste Manage.
,
27
(
10
), pp.
1383
1392
.
25.
Dennis
,
R. A.
,
Shelton
,
W. W.
, and
Le
,
P.
,
2007
, “
Development of Baseline Performance Values for Turbines in Existing IGCC Applications
,”
ASME
Paper No. GT2007-28096.
26.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
27.
Praisner
,
T. J.
,
Grover
,
E. A.
,
Knezevici
,
D. C.
,
Popovic
,
I.
,
Sjolander
,
S. A.
,
Clark
,
J. P.
, and
Sondergaard
,
R.
,
2008
, “
Toward the Expansion of Low-Pressure-Turbine Airfoil Design Space
,”
ASME
Paper No. GT2008-50898.
28.
Lake
,
J.
,
King
,
P.
, and
Rivir
,
R.
,
1999
, “
Reduction of Separation Losses on a Turbine Blade With Low Reynolds Numbers
,”
AIAA
Paper No. AIAA 99-0242.
29.
Mensch
,
A.
,
Thole
,
K. A.
, and
Craven
,
B. A.
,
2014
, “
Conjugate Heat Transfer Measurements and Predictions of a Blade Endwall With a Thermal Barrier Coating
,”
ASME
Paper No. GT2014-25346.
30.
Mensch
,
A.
, and
Thole
,
K. A.
,
2015
, “
Conjugate Heat Transfer Analysis of the Effects of Impingement Channel Height for a Turbine Blade Endwall
,”
Int. J. Heat Mass Transfer
,
82
, pp.
66
77
.
You do not currently have access to this content.