This is the first part of a series of two papers on unsteady computational fluid dynamics (CFD) methods for the numerical simulation of aerodynamic noise generation and propagation. In this part, the stability, accuracy, and efficiency of implicit Runge–Kutta schemes for the temporal integration of the compressible Navier–Stokes equations are investigated in the context of a CFD code for turbomachinery applications. Using two model academic problems, the properties of two explicit first stage, singly diagonally implicit Runge–Kutta (ESDIRK) schemes of second- and third-order accuracy are quantified and compared with more conventional second-order multistep methods. Finally, to assess the ESDIRK schemes in the context of an industrially relevant configuration, the schemes are applied to predict the tonal noise generation and transmission in a modern high bypass ratio fan stage and comparisons with the corresponding experimental data are provided.

References

1.
Hubbard
,
H. H.
, ed.,
1995
,
Aeroacoustics of Flight Vehicles: Theory and Practice—Volume 1: Noise Sources
,
Acoustical Society of America
, Woodbury, NY.
2.
Tam
,
C. K.
,
2004
, “
Computational Aeroacoustics: An Overview of Computational Challenges and Applications
,”
Int. J. Comput. Fluid Dyn.
,
18
(
6
), pp.
547
567
.10.1080/10618560410001673551
3.
Envia
,
E.
,
Wilson
,
A. G.
, and
Huff
,
D. L.
,
2004
, “
Fan Noise: A Challenge to CAA
,”
Int. J. Comput. Fluid Dyn.
,
18
(
6
), pp.
471
480
.10.1080/10618560410001673489
4.
Frey
,
C.
,
Ashcroft
,
G.
,
Kersken
,
H.-P.
, and
Weckmüller
,
C.
,
2012
, “
Advanced Numerical Methods for the Prediction of Tonal Noise in Turbomachinery—Part II: Time-Linearized Methods
,” ASME Paper No. GT2012-69418.
5.
Hairer
,
E.
, and
Wanner
,
G.
, eds.,
1996
,
Solving Ordinary Differential Equations—II: Stiff and Differential-Algebraic Problems
,
Springer-Verlag
,
Berlin
.
6.
Crank
,
J.
, and
Nicolson
,
P.
,
1947
, “
A Practical Method for Numerical Evaluation of Solutions of Partial Differential Equations of the Heat-Conduction Type
,”
Proc. Cambridge Phil. Soc.
,
43
, pp.
50
67
.10.1017/S0305004100023197
7.
Nürnberger
,
D.
,
Eulitz
,
F.
,
Schmitt
,
S.
, and
Zachcial
,
A.
2001
, “
Recent Progress in the Numerical Simulation of Unsteady Viscous Multistage Turbomachinery Flow
,”
15th International Symposium on Air Breathing Engines
, Bangalore, India, September 3–7, Paper No. ISABE 2001-1081.
8.
Kügeler
,
E.
,
2005
, “
Numerical Method for the Accurate Analysis of Cooling Efficiency in Film-Cooled Turbine-Blades
,” DLR-Forschungsbericht 2005-11,
Institute of Propulsion Technology, German Aerospace Center
(in German).
9.
van Albada
,
G. D.
,
van Leer
,
B.
, and
Roberts
, Jr.,
W. W.
,
1982
, “
A Comparative Study of Computational Methods in Cosmic Gas Dynamics
,”
Astron. Astrophys.
,
108
, pp.
76
84
.
10.
Wilcox
,
D. C.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1310
.10.2514/3.10041
11.
Franke
,
M.
,
Röber
,
T.
,
Kügeler
,
E.
, and
Ashcroft
,
G.
,
2010
, “
Turbulence Treatment in Steady and Unsteady Turbomachinery Flows
,”
V European Conference on Computational Fluid Dynamics
, ECCOMAS CFD 2010, Lisbon, Portugal, June 14–17.
12.
Butcher
,
J. C.
,
1987
,
The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods
,
Wiley-Interscience
, New York.
13.
Lambert
,
J. D.
,
1991
,
Numerical Methods for Ordinary Differential Systems: The Initial Value Problem
,
John Wiley & Sons, Inc.
,
New York
.
14.
Liu
,
H.
, and
Zou
,
J.
,
2006
, “
Some New Additive Runge–Kutta Methods and Their Applications
,”
J. Comput. Math
,
190
, pp.
74
98
.10.1016/j.cam.2005.02.020
15.
Alexander
,
R.
,
2003
, “
Design and Implementation of DIRK Integrators for Stiff Systems
,”
Appl. Numer. Math.
,
46
, pp.
1
17
.10.1016/S0168-9274(03)00012-6
16.
Liniger
,
W.
, and
Odeh
,
F.
,
1972
, “
A-Stable, Accurate Averaging of Multistep Methods for Stiff Differential Equations
,”
IBM J. Res. Develop.
, pp.
335
348
.10.1147/rd.164.0335
17.
Kaplan
,
B.
,
Nicke
,
E.
, and
Voss
,
C.
,
2006
, “
Design of a Highly Efficient Low-Noise Fan For Ultra-High Bypass Engines
,” ASME Paper No. GT2006-90363.
18.
Giles
,
M. B.
,
1990
, “
Nonreflecting Boundary Conditions for Euler Calculations
,”
AIAA J.
,
28
(
12
), pp.
2050
2058
.10.2514/3.10521
19.
Schnell
,
R.
,
2004
, “
Investigation of the Tonal Acoustic Field of a Transonic Fanstage by Time-Domain CFD—Calculations With Arbitrary Blade Count
,” ASME Paper No. GT2004-54216.
20.
Tyler
,
J. M.
, and
Sofrin
,
T. G.
,
1962
, “
Axial Flow Compressor Noise Studies
,”
SAE
Technical Paper 620532.10.4271/620532
21.
Weckmüller
,
C.
,
Fritzsch
,
A.
, and
Guerin
,
S.
,
2009
, “
Extended Multi-Plane Pressure Mode Matching
,”
Proceedings of the NAG/DAGA 2009 International Conference on Acoustics
,
Rotterdam, The Netherlands
, March 23–26.
22.
Tapken
,
U.
,
Raitor
,
T.
, and
Enghardt
,
L.
,
2009
, “
Tonal Noise Radiation From an UHBR Fan—Optimized In-Duct Radial Mode Analysis
,”
Proceedings of the 15th AIAA/CEAS Aeroacoustics Conference
,
Miami, FL
, May 11–13.
You do not currently have access to this content.