The effects of wet compression on the flow field within a compressor stage, particularly in the presence of the separated flow region, are not fully understood. Numerical simulations of 3D compressible separated flows within a wet compression compressor stage are carried out using a computational fluid dynamics (CFD) program. Numerical computations of flow fields in a compressor cascade with wet compression assume that a separated region exist in the corner of the rotor blade suction surface and hub surface in the case of dry compression. Under different operating conditions and with wet compression, this study presents the changes in the extent of separated region on the flow channel surfaces, compression efficiency, pressure ratio and specific compression work, etc. Also, effects of factors such as droplet size, droplet temperature, and injected water flow rate on the compressor stage performance and flow field within compressor stage passage have been investigated. The results show that wet compression could weaken and eliminate the flow separation and then the efficiency and pressure ratio maintain a high level.

1.
Zheng
,
Q.
,
Sun
,
Y.
,
Li
,
S.
, and
Wang
,
Y.
, 2002, “
Thermodynamic Analysis of Wet Compression Process in the Compressor of Gas Turbine
,”
ASME
Paper No. GT-2002-30590.
2.
Meher-Homji
,
C. B.
, and
Mee
III,
T. R.
, 2000, “
Inlet Fogging of Gas Turbine Engines: Part A—Theory, Psychrometrics, and Fog Generation
,”
ASME
Paper No. 2000-GT-0307.
3.
Bhargava
,
R. K.
, and
Meher-Homji
,
C. B.
, 2002, “
Parametric Analysis of Existing Gas Turbines With Inlet Evaporative and Overspray Fogging
,”
ASME
Paper No. GT-2002-30560.
4.
Jonsson
,
M.
, and
Yan
,
J.
, 2005, “
Humidified Gas Turbines-a Review of Proposed and Implemented Cycles
,”
Energy
0360-5442,
30
, pp.
1013
1078
.
5.
Kleinschmidt
,
R. V.
, 1947, “
Value of Wet Compression in Gas Turbine Cycles
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
69
, pp.
115
116
.
6.
Bhargava
,
R. K.
,
Meher-Homji
,
C. B.
,
Chaker
,
M. A.
,
Bianchi
,
M.
,
Melino
,
F.
, and
Peretto
,
A.
, 2005, “
Gas Turbine Fogging Technology—A State of the Art Review: Part II—Overspray Fogging, Analytical and Experimental Aspects
,”
ASME
Paper No. GT2005-68337.
7.
Ingistov
,
S.
, 2000, “
Fog System Performance in Power Augmentation of Heavy Duty Power Generating Gas Turbine
,”
ASME
Paper No. 2000-GT-305.
8.
Horlock
,
J. H.
, 2001, “
Compressor Performance With Water Injection
,”
ASME
Paper No. 2001-GT-0343.
9.
Chaker
,
M. A.
,
Meher-Homji
,
C. B.
, and
Mee
III,
T. R.
, 2002, “
Inlet Fogging of Gas Turbine Engines: Part A—Fog Droplet Thermodynamics, Heat Transfer and Practical Considerations
,”
ASME
Paper No. GT-2002-30562.
10.
Chaker
,
M. A.
,
Meher-Homji
,
C. B.
, and
Mee
III,
T. R.
, 2002, “
Inlet Fogging of Gas Turbine Engines: Part B—Fog Droplet Sizing Analysis, Nozzle Types, Measurement and Testing
,”
ASME
Paper No. GT-2002-30563.
11.
Chaker
,
M. A.
,
Meher-Homji
,
C. B.
, and
Mee
III,
T. R.
, 2002, “
Inlet Fogging of Gas Turbine Engines: Part C—Fog Behavior in Inlet Ducts, CFD Analysis and Wind Tunnel Experiments
,”
ASME
Paper No. GT-2002-30564.
12.
Bagnoli
,
M.
,
Bianchi
,
M.
,
Melino
,
F.
,
Peretto
,
A.
,
Spina
,
P. R.
,
Bhargava
,
R. K.
, and
Ingistov
,
S.
, 2004, “
A Parametric Study of Interstage Injection on GE Frame 7 EA Gas Turbine
,”
ASME
Paper No. GT2004-53042.
13.
Zheng
,
Q.
,
Li
,
M.
, and
Sun
,
Y.
, 2003, “
Thermodynamic Performance of Wet Compression and Regenerative (WCR) Gas Turbine
,”
ASME
Paper No. GT-2003-38517.
14.
Li
,
M.
, and
Zheng
,
Q.
, 2004, “
Wet Compression System Stability Analysis: Part I—Wet Compression Moore Greitzer Transient Model
,”
ASME
Paper No. GT-2004-54018.
15.
Zheng
,
Q.
, and
Li
,
M.
, 2004, “
Wet Compression System Stability Analysis: Part II-Simulations and Bifurcation Analysis
,”
ASME
Paper No. GT-2004-54020.
16.
Zheng
,
Q.
, and
Sun
,
Y.
, 1997, “
Experiment on Water Spraying Internal Cooling within the Compressor of Gas Turbine
,”
ASME
Paper No. 97-GT-158.
17.
Wayne
,
R. S.
, and
Michael
,
R. S.
, 2003, “
The Effects of Wet Compression on Gas Turbine Engine Operating Performance
,”
ASME
Paper No. GT2003-38045.
18.
Bhargava
,
R. K.
,
Meher-Homji
,
C. B.
,
Chaker
,
M. A.
,
Bianchi
,
M.
,
Melino
,
F.
,
Peretto
,
A.
, and
Ingistov
,
S.
, 2005, “
Gas Turbine Fogging Technology—A State of the Art Review: Part I—Inlet Evaporative Fogging, Analytical and Experimental Aspects
,”
ASME
Paper No. GT2005-68336.
19.
Bianchi
,
M.
,
Melino
,
F.
,
Peretto
,
A.
,
Spina
,
P. R.
, and
Ingistov
,
S.
, 2007, “
Influence of Water Droplet Size and Temperature on Wet Compression
,”
ASME
Paper No. GT2007-27458.
20.
Wang
,
Y.
,
Wang
,
G.
,
Li
,
S.
, and
Sun
,
Y.
, 2002, “
Analysis on Effects of Wet Compression on Surge Margin of a Small Gas Turbine
,”
ASME
Paper No. IJPGC2002-26042.
21.
Gbadebo
,
S. A.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
, 2004, “
Three-Dimensional Separations in Axial Compressors
,”
ASME
Paper No. GT2004-53617.
22.
Gbadebo
,
S. A.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
, 2006, “
Interaction of Tip Clearance Flow and Three-Dimensional Separations in Axial Compressors
,”
ASME
Paper No. GT2006-90071.
23.
Joachim
,
M.
,
Chunill
,
H.
, and
Wolfgang
,
N.
, 2001, “
An Experimental and Numerical Investigation into the Mechanisms of Rotating Instability
,”
ASME
Paper No. 2001-GT-0536.
24.
Oakes
,
W. C.
,
Lawless
,
P. B.
, and
Fleeter
,
S.
, 2004, “
High-Speed Centrifugal Compressor Instabilities During Speed Transients
,”
J. Aerosp. Eng.
0893-1321,
17
(
3
), pp.
106
112
.
25.
Gourdain
,
N.
,
Burguburu
,
S.
,
Leboeuf
,
F.
, and
Miton
,
H.
, 2006, “
Numerical Simulation of Rotating Stall in a Subsonic Compressor
,”
Aerosp. Sci. Technol.
1270-9638,
10
, pp.
9
18
.
26.
Chen
,
J. P.
,
Michael
,
D. H.
, and
Gregory
,
P. H.
, 2007, “
Pre-Stall Behavior of a Transonic Axial Compressor Stage via Time-Acurate Numerical Simulation
,”
ASME
Paper No. GT2007-27926.
27.
Huu
,
D. V.
,
Choon
,
S. T.
, and
Edward
,
M. G.
, 2005, “
Criteria for Spike Initiated Rotating Stall
,”
ASME
Paper No. GT2005-68374.
28.
Song
,
Y.
,
Chen
,
F.
,
Yang
,
J.
, and
Wang
,
Z.
, 2005, “
A Numerical Investigation of Boundary Layer Suction in Compound Lean Compressor Cascades
,”
ASME
Paper No. GT2005-68441.
29.
Härtel
,
C.
, and
Pfeiffer
,
P.
, 2003, “
Model Analysis of High-Fogging Effects on the Work of Compression
,”
ASME
Paper No. GT 2003-38117.
30.
Utamura
,
M.
,
Takehara
,
I.
, and
Karasawa
,
H.
, 1998, “
MAT, A Novel Open Cycle Gas Turbine for Power Augmentation
,
Energy Convers. Manage.
0196-8904,
39
(
16
), pp.
1631
1642
.
31.
Ranz
,
W. E.
, and
Marshall
,
W. R.
, Jr.
, 1952, “
Evaporation from Drops, Part I
,”
Chem. Eng. Prog.
0360-7275,
48
, pp.
141
146
.
32.
Ranz
,
W. E.
, and
Marshall
,
W. R.
, Jr.
, 1952, “
Evaporation from Drops, Part II
,”
Chem. Eng. Prog.
0360-7275,
48
, pp.
173
180
.
You do not currently have access to this content.