In a modern gas turbine engine, the outer casing (shroud) of the shroudless high-pressure turbine is exposed to a combination of high flow temperatures and heat transfer coefficients. The casing is consequently subjected to high levels of convective heat transfer, a situation that is complicated by flow unsteadiness caused by periodic blade-passing events. In order to arrive at an overtip casing design that has an acceptable service life, it is essential for manufacturers to have appropriate predictive methods and cooling system configurations. It is known that both the flow temperature and boundary layer conductance on the casing wall vary during the blade-passing cycle. The current article reports the measurement of spatially and temporally resolved heat transfer coefficient (h) on the overtip casing wall of a fully scaled transonic turbine stage experiment. The results indicate that h is a maximum when a blade tip is immediately above the point in question, while the lower values of h are observed when the point is exposed to the rotor passage flow. Time-resolved measurements of static pressure are used to reveal the unsteady aerodynamic situation adjacent to the overtip casing wall. The data obtained from this fully scaled transonic turbine stage experiment are compared to previously published heat transfer data obtained in low-Mach number cascade-style tests of similar high-pressure blade geometries.

1.
2004,
Turbine Blade Tip Design and Tip Clearance Treatment
,
von Karman Institute for Fluid Dynamics Lecture Series
,
T.
Arts
, ed.,
von Karman Institute for Fluid Dynamics
, Brussels.
2.
Yamamoto
,
A.
, 1989, “
Endwall Flow/Loss Mechanisms in a Linear Turbine Cascade With Blade Tip-Clearance
,”
ASME J. Turbomach.
0889-504X,
111
, pp.
264
275
.
3.
Heyes
,
F. J. G.
,
Hodson
,
H. P.
, and
Dailey
,
G. M.
, 1992, “
The Effect of Blade Tip Geometry on the Tip Leakage Flow in Axial Turbine Cascades
,”
ASME J. Turbomach.
0889-504X,
114
(
3
), pp.
643
651
.
4.
Kim
,
Y. W.
, and
Metzger
,
D. E.
, 1995, “
Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models
,”
ASME J. Turbomach.
0889-504X,
117
(
1
), pp.
12
21
.
5.
Papa
,
M.
,
Goldstein
,
R. J.
, and
Gori
,
F.
, 2003, “
Effects of Tip Geometry and Tip Clearance on the Mass/Heat Transfer From a Large-Scale Gas Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
125
(
1
), pp.
90
96
.
6.
Srinivasan
,
V.
, and
Goldstein
,
R. J.
, 2003, “
Effect of Endwall Motion on Blade Tip Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
125
(
2
), pp.
267
273
.
7.
Cho
,
H. H.
,
Rhee
,
D. H.
, and
Choi
,
J. H.
, 2001, “
Heat/Mass Transfer Characteristics on Turbine Shroud With Blade Tip Clearance
,”
Ann. N.Y. Acad. Sci.
0077-8923,
934
, pp.
281
288
.
8.
Guenette
,
G. R.
,
Epstein
,
A. H.
,
Norton
,
R. J. G.
, and
Yuzhang
,
C.
, 1985, “
Time-Resolved Measurements of a Turbine Rotor Stationary Tip Casing Pressure and Heat Transfer Field
,” AIAA Paper No. 85-1220.
9.
Chana
,
K. S.
, and
Jones
,
T. V.
, 2001, “
An Investigation on Turbine Tip and Shroud Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
125
(
3
), pp.
513
520
.
10.
Polanka
,
M. D.
,
Hoying
,
D. A.
,
Meininger
,
M.
, and
MacArthur
,
C. D.
, 2003, “
Turbine Tip and Shroud Heat Transfer and Loading Part A: Parameter Effects Including Reynolds Number, Pressure Ratio, and Gas to Metal Temperature Ratio
,”
ASME J. Turbomach.
0889-504X,
125
(
1
), pp.
97
106
.
11.
Ameri
,
A. A.
, and
Steinthorsson
,
E.
, 1996, “
Analysis of Gas Turbine Rotor Blade Tip and Shroud Heat Transfer
,” ASME Paper No. 96-GT-189.
12.
Ameri
,
A. A.
,
Steinthorsson
,
E.
, and
Rigby
,
D. L.
, 1999, “
Effects of Tip Clearance and Casing Recess on Heat Transfer and Stage Efficiency in Axial Turbines
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
683
693
.
13.
Thorpe
,
S. J.
,
Yoshino
,
S.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
, 2004, “
An Investigation of the Heat Transfer and Static Pressure on the Over-Tip Casing Wall of an Axial Turbine Operating at Engine Representative Flow Conditions—Part II: Time-Resolved Results
,”
Int. J. Heat Fluid Flow
0142-727X,
25
(
6
), pp.
945
960
.
14.
Thorpe
,
S. J.
,
Miller
,
R. J.
,
Yoshino
,
S.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
, 2007, “
The Effect of Work Processes on the Casing Heat Transfer of a Transonic Turbine
,”
ASME J. Turbomach.
0889-504X,
129
, pp.
84
91
.
15.
Chyu
,
M. K.
, 2001, “
Heat Transfer Near Turbine Nozzle Endwall
,”
Ann. N.Y. Acad. Sci.
0077-8923,
934
, pp.
27
36
.
16.
Ainsworth
,
R. W.
,
Schultz
,
D. L.
,
Davies
,
M. R. D.
,
Forth
,
C. J. P.
,
Hilditch
,
M. A.
,
Oldfield
,
M. L. G.
, and
Sheard
,
A. G.
, 1988, “
A Transient Flow Facility for the Study of the Thermofluid-Dynamics of a Full Stage Turbine Under Engine Representative Conditions
,” ASME Paper No. 8-GT-144.
17.
Miller
,
R. J.
,
Moss
,
R. W.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
, 2001, “
Time-Resolved Vane-Rotor-Vane Interaction in a Transonic One-and-a-Half Stage Turbine
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
215
(
6
), pp.
675
685
.
18.
Thorpe
,
S. J.
,
Yoshino
,
S.
,
Thomas
,
G. A.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
, 2005, “
Blade-Tip Heat Transfer in a Transonic Turbine
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
219
(
A6
), pp.
421
430
.
19.
Payne
,
S. J.
,
Ainsworth
,
R. W.
,
Miller
,
R. J.
,
Moss
,
R. W.
, and
Harvey
,
N. W.
, 2003, “
Unsteady Loss in a High Pressure Turbine Stage
,”
Int. J. Heat Fluid Flow
0142-727X,
24
(
5
), pp.
698
708
.
20.
Atkins
,
N. R.
, and
Ainsworth
,
R. W.
, 2005, “
The Measurement of Shaft Power in a Fully Scaled Transient Turbine Test Facility
,” ASME Paper No. GT2005-68998.
21.
Thorpe
,
S. J.
,
Yoshino
,
S.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
, 2004, “
Improved Fast-Response Heat Transfer Instrumentation for Short Duration Wind Tunnels
,”
Meas. Sci. Technol.
0957-0233,
15
(
9
), pp.
1897
1909
.
22.
Schultz
,
D. L.
, and
Jones
,
T. V.
, 1973, “
Heat-Transfer Measurements in Short-Duration Hypersonic Facilities
,” AGARDOgraph 165, North Atlantic Treaty Organization.
23.
Moore
,
J.
,
Moore
,
J. G.
,
Henry
,
G. S.
, and
Chaudhry
,
U.
, 1989, “
Flow and Heat Transfer in Turbine Tip Gaps
,”
ASME J. Turbomach.
0889-504X,
111
, pp.
301
309
.
You do not currently have access to this content.