Effusion cooling of combustor liners for gas turbine engines is quite challenging and necessary to prevent thermal distress of the combustor liner walls. The flow and thermal patterns in the cooling layer are affected by the closely spaced film-cooling holes. It is important to fully document how the film layer behaves with a full-coverage cooling scheme to gain an understanding into surface cooling phenomena. This paper discusses experimental results from a combustor simulator tested in a low-speed wind tunnel. Engine representative, nondimensional coolant flows were tested for a full-coverage effusion plate. Laser Doppler velocimetry was used to measure the flow characteristics of the cooling layer. These experiments indicate that the full-coverage film cooling flow has unique and scaleable velocity profiles that result from the closely spaced effusion holes. A parametric study of the cooling flow behavior illustrates the complex nature of the film flow and how it affects cooling performance.

1.
Andrews
,
G. E.
,
Asere
,
A. A.
,
Gupta
,
M. L.
, and
Mkpadi
,
M. C.
, 1985, “
Full Coverage Discrete Hole Film Cooling: The Influence of Hole Size
,” ASME 85-GT-47.
2.
Andrews
,
G. E.
,
Alikhanizadeh
,
M.
,
Tehrani
,
F. B.
,
Hussain
,
C. I.
, and
Azari
,
M. S. K.
, 1987, “
Small Diameter Film Cooling Holes: Influence of Hole Size and Pitch
,” ASME 87-HT-28.
3.
Andrews
,
G. E.
,
Khalifa
,
I. M.
,
Asere
,
A. A.
, and
Bazdidi-Tehrani
,
F.
, 1995, “
Full Coverage Effusion Film Cooling with Inclined Holes
,” ASME 95-GT-274.
4.
Lin
,
Y.
,
Song
,
B.
,
Li
,
B.
,
Liu
,
G.
, and
Wu
,
Z.
, 2003, “
Investigation of Film Cooling Effectiveness of Full-Coverage Inclined Multihole Walls with Different Hole Arrangements
,” ASME GT2003-38881.
5.
Martiny
,
M.
,
Schulz
,
A.
, and
Witting
,
S.
, 1995, “
Full-Coverage Film Cooling Investigations: Adiabatic Wall Temperatures and Flow Visualization
,” ASME 95-WA∕HT-4.
6.
Sasaki
,
M.
,
Takahara
,
K.
,
Kumagai
,
T.
, and
Hamano
,
M.
, 1979, “
Film Cooling Effectiveness for Injection from Multirow Holes
,”
ASME J. Eng. Power
0022-0825
101
, pp.
101
108
.
7.
Harrington
,
M.
,
McWaters
,
M.
,
Bogard
,
D.
,
Lemmon
,
C.
, and
Thole
,
K. A.
, 2001, “
Full-Coverage Film Cooling with Short Normal Injection Holes
,”
J. Turbomach.
0889-504X
123
, pp.
798
805
.
8.
Fric
,
T.
,
Campbell
,
R.
, and
Rettig
,
M.
, 1997, “
Quantitative Visualization of Full-Coverage Discrete-Hole Film Cooling
,” ASME 97-GT-328.
9.
Bazdidi-Tehrani
,
F.
, and
Andrews
,
G.
, 1997, “
Full Coverage Discrete Hole Film Cooling: Investigation of the Effect of Variable Density Ratio (Part II)
,” ASME 97-GT-341.
10.
Pietrzyk
,
J. R.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
, 1990, “
Effects of Density Ratio on the Hydrodynamics of Film Cooling
,”
J. Turbomach.
0889-504X
112
, pp.
437
443
.
11.
Barringer
,
M. D.
,
Richard
,
O. T.
,
Walter
,
J. P.
,
Stitzel
,
S. M.
, and
Thole
,
K. A.
, 2002, “
Flow Field Simulations of a Gas Turbine Combustor
,”
J. Turbomach.
0889-504X
124
, pp.
508
516
.
12.
Moffat
,
J. R.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777
1
, pp.
3
17
.
13.
Pietrzyk
,
J. R.
, 1989, “
Experimental Study of the Interaction of Dense Jets With a Crossflow for Gas Turbine Applications
,” Ph.D. dissertation, University of Texas at Austin, Austin, TX.
14.
Pietrzyk
,
J. R.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
, 1989, “
Hydrodynamics Measurements of Jets in Crossflow for Gas Turbine Film Cooling Applications
,”
J. Turbomach.
0889-504X
111
(
2
), pp.
139
145
.
15.
Lee
,
S. W.
,
Lee
,
J. S.
, and
Ro
,
S. T.
, 1994, “
Experimental Study on the Flow Characteristics of Streamwise Inclined Jets in Crossflow on Flat Plate
,”
J. Turbomach.
0889-504X
116
, pp.
97
105
.
16.
Forth
,
C. J. P.
, and
Jones
,
T. V.
, 1986, “
Scaling Parameters in Film-Cooling
,”
Proceedings of the 8th International Heat Transfer Conference
, pp.
1271
1276
.
You do not currently have access to this content.