New techniques for processing transient liquid crystal heat transfer experiment have been developed. The methods are able to measure detailed local heat transfer coefficient and adiabatic wall temperature in a three temperature system from a single transient test using the full intensity history recorded. Transient liquid crystal processing methods invariably assume that lateral conduction is negligible and so the heat conduction process can be considered one-dimensional into the substrate. However, in regions with high temperature variation such as immediately downstream of a film-cooling hole, it is found that lateral conduction can become significant. For this reason, a procedure which allows for conduction in three dimensions was developed by the authors. The paper is the first report of a means of correcting data from the transient heat transfer liquid crystal experiments for the effects of significant lateral conduction. The technique was applied to a film cooling system as an example and a detailed uncertainty analysis performed.

1.
den Ouden, C., and Hoogendoorn, C. J., 1974, “Local Convective Heat Transfer Coefficients for Jets Impinging on a Plate: Experiments Using a Liquid Crystal Technique,” Proceedings of the 5th International Heat Transfer Conference, Taylor and Francis, London, 5, pp. 293–295.
2.
Copper
,
T. E.
,
Field
,
R. J.
, and
Meyer
,
J. F.
,
1975
, “
Liquid Crystal Thermograph and Its Applications of the Study of Convective Heat Transfer
,”
ASME J. Heat Transfer
,
97
, pp.
442
450
.
3.
Baughn
,
J. W.
,
Hechanova
,
A. E.
, and
Yan
,
X.
,
1991
, “
An Experimental Study of Entrainment Effects on the Heat Transfer From a Flat Surface to a Heated Circular Impingement Jet
,”
ASME J. Heat Transfer
,
113
, pp.
1023
1025
.
4.
Lucas, M. G., Ireland, P. T., Wang, Z., Jones, T. V., and Pearce, W. J., 1992, “Fundamental Studies of Impingement Cooling Thermal Boundary Conditions,” AGARD, Turkey, Paper 14.
5.
Sargison, J., E., Guo, S., M., Oldfield M., L., G., Lock, G., D., and, Rawlinson, A., J., 2001, “A Converging Slot-Hole Film-Cooling Geometry Part 1: Low-Speed Flat-Plate Heat Transfer and Loss,” ASME Paper 2001-GT-0126.
6.
Ireland, P. T., and Jones, T. V., 1986, “Detailed Measurements of Heat Transfer on and Around a Pedestal in Fully-Developed Channel Flow,” Proc. 8th Int. Heat Trans. Conf., San Francisco, Taylor and Francis, London, pp. 975–986.
7.
Ireland, P. T., Wang, Z., and Jones, T. V., 1995, “Liquid Crystal Heat Transfer Measurements,” Measurement Techniques Lecture Series 1995-01, von Karman Institute for Fluid Dynamics.
8.
Wang
,
Z.
,
Ireland
,
P. T.
, and
Jones
,
T. V.
,
1993
, “
An Advanced Method of Processing Liquid Crystal Video Signals From Transient Heat Transfer Experiments
,”
ASME J. Turbomach.
,
117
, pp.
184
189
.
9.
Wang
,
Z.
,
Ireland
,
P. T.
, and
Jones
,
T. V.
,
1994
, “
A Color Image Processing System for Transient Liquid Crystal Heat Transfer Experiments
,”
ASME J. Turbomach.
,
118
, pp.
421
427
.
10.
Lucas, M. G., Ireland, P. T., Wang, Z., and Jones, T. V., 1993, “Fundamental Studies of Impingement Cooling Thermal Boundary Conditions,” AGARD CP-527, Paper No. 14.
11.
Van Treuren
,
K. W.
,
Wang
,
Z.
,
Ireland
,
P. T.
, and
Jones
,
T. V.
,
1994
, “
Detailed Measurements of Local Heat Transfer Coefficient and Adiabatic Wall Temperature Beneath an Array of Impinging Jets
,”
ASME J. Turbomach.
,
116
, pp.
369
374
.
12.
Son
,
C.
,
Gillespie
,
D. R. H.
,
Ireland
,
P. T.
, and
Dailey
,
G. M.
,
2001
, “
Heat Transfer and Flow Characteristics of an Engine Representative Impingement Cooling System
,”
ASME J. Turbomach.
,
123
, pp.
154
160
.
13.
Baughn
,
J. W.
,
Mayhew
,
J. E.
,
Anderson
,
M. R.
, and
Butler
,
R. J.
,
1998
, “
A Periodic Transient Method Using Liquid Crystals for the Measurement of Local Heat Transfer Coefficients
,”
ASME J. Heat Transfer
,
120
, pp.
772
775
.
14.
Ireland, P. T., and Jones, T. V., 1987, “Note on the Double Crystal Method of Measuring Heat Transfer Coefficient,” OUEL Report 1710/87.
15.
Vedula, R. J., and Metzger, D. E., 1991, “A Method for Simultaneous Determination of Local Effectiveness and Heat Transfer Distributions in Three-Temperature Convection Situations,” ASME Paper 91-GT-345.
16.
Chambers
,
A. C.
,
Gillespie
,
D. R. H.
, and
Ireland
,
P. T.
,
2003
, “
A Novel Transient Liquid Crystal Technique to Determine Heat Transfer Coefficient Distributions and Adiabatic Wall Temperature in a Three Temperature Problem
,”
ASME J. Turbomach.
,
125
, pp.
538
546
.
17.
Walker, D. G., and Scott, E. P., 1998, “The Effects of Lateral Conduction on Heat Flux Estimation From Surface Temperature Measurements,” AIAA/ASME Joint Thermophysics and Heat Transfer Conference, ASME, New York, 3, pp. 245–252.
18.
Walker
,
D. G.
, and
Scott
,
E. P.
,
1998b
, “
Evaluation of Estimation Methods for High Unsteady Heat Fluxes From Surface Measurements
,”
J. Thermophys. Heat Transfer
,
12
(
4
), pp.
543
551
.
19.
Walker
,
D. G.
,
Scott
,
E. P.
, and
Nowak
,
R. J.
,
2000
, “
Estimation Methods for Two-Dimensional Conduction Effects of Shock-Shock Heat Fluxes
,”
J. Thermophys. Heat Transfer
,
14
(
4
), pp.
533
539
.
20.
Lin
,
M.
, and
Wang
,
T.
,
2002
, “
A Transient Liquid Crystal Method Using a 3-D Inverse Transient Conduction Scheme
,”
Int. J. Heat Mass Transfer
,
45
, pp.
3491
3501
.
21.
Saumweber, C., Schulz, A., and Wittig., S., 2002, “Free-Stream Turbulence Effects on Film Cooling With Shaped Holes,” ASME Paper GT-2002-30170.
22.
Gillespie, D. R. H., 1996, “Intricate Internal Cooling Systems for Gas Turbine Blading,” D. Phil thesis, Department of Engineering Science, Oxford University, Oxford, UK.
23.
Gerald, C. F., and Wheatley, P. O., 1994, Applied Numerical Analysis, 5th Ed., Addison-Wesley, New York.
24.
Peaceman
,
D. W.
, and
Rachford
, Jr.,
H. H.
,
1955
, “
The Numerical Solution of Parabolic and Elliptic Differential Equations
,”
J. Soc. Ind. Appl. Math.
,
3
(
1
), pp.
28
41
.
25.
Douglas
, Jr.,
Jim
,
1962
, “
Alternating Direction Methods for Three Space Variables
,”
Numer. Math.
,
4
, pp.
41
63
.
26.
Kellogg
,
R. B.
,
1963
, “
Another Alternating Direction Implicit Method
,”
J. Soc. Ind. Appl. Math.
,
11
(
4
), pp.
976
979
.
27.
Fairweather
,
G.
, and
Mitchell
,
A. R.
,
1965
, “
A New Alternating Direction Method for Parabolic Equations in Three Space Variables
,”
J. Soc. Ind. Appl. Math.
,
13
(
4
), pp.
957
965
.
28.
Stone
,
H. L.
,
1968
, “
Iterative Solution of Implicit Approximations of Multidimensional Partial Differential Equations
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
,
5
(
3
), pp.
530
558
.
29.
Burd, S. W., and Simon., T. W., 1997, “The Influence of Coolant Supply Geometry on Film Coolant Exit Flow and Surface Adiabatic Effectiveness,” ASME Paper 97-GT-25.
30.
Moffat
,
R. J.
,
1982
, “
Contributions to the Theory of Single Sample Uncertainty Analysis
,”
ASME J. Fluids Eng.
,
104
, p.
250
250
.
31.
Wang
,
Z.
,
Ireland
,
P. T.
,
Kohler
,
S. T.
, and
Chew
,
J. W.
,
1996
, “
Heat Transfer Measurements to a Gas Turbine Cooling Passage With Inclined Ribs
,”
ASME J. Turbomach.
,
120
, pp.
63
69
.
You do not currently have access to this content.