Abstract
An analysis for helical bearings operated in turbulent regime, with negligible inertia in an incompressible fluid film, was performed [10, 11]. The analysis is based on the linearised lubrication theory developed by Ng and Pan [4]. The outlines for this analysis and, in particular, the bearing performance data for various helical groovings are given in this paper. The data presented include the bearing performance at the steady state, the stiffness and damping coefficients, and the critical mass of journal in both laminar and turbulent regimes. To facilitate designs, these data are computed for optimal geometries of helical grooved bearings to provide maximum radial stiffness at various Reynolds numbers. In addition, the effect of external pressurized supply of lubricant are shown in the performance curves.