Abstract

Rail grinding, a common maintenance operation in the railway industry, is not a fully efficient process, as energy not used for cutting dissipates into the participants' bodies. The energy dissipated into the rail surface can affect its engineering properties, potentially leading to malfunction and microstructural transformations. A phenomenological model was developed to study the dissipation mechanisms that take place in rail grinding. The model includes wear, thermal dissipation, and phase transformation, driven by the coupling of thermal and mechanical effects. Energy and mass balances were calculated within a controlled volume at the experimental grinding interface. Experiments were conducted in a lab built for experimental grinding. The model results were validated through statistical comparison with experimental data and findings from specialized literature. Additionally, the study explores white etching layer formation under grinding conditions and the influence of mechanical stress. By integrating theoretical modeling with experimental validation, this research enhances the understanding of energy dissipation in rail grinding, providing a foundation for optimizing grinding processes, reducing material degradation, and improving rail longevity.

References

1.
Zarembski
,
A. M.
,
2005
,
The Art and Science of Rail Grinding
,
Simmons-Boardman Books, Inc.
,
Omaha, NE
.
2.
Zhang
,
P.
,
Zhang
,
W.
,
Yuan
,
Y.
,
Fan
,
X.
, and
Zhu
,
M.
,
2020
, “
Probing the Effect of Grinding-Heat on Material Removal Mechanism of Rail Grinding
,”
Tribol. Int.
,
147
(
7
), p.
105942
.
3.
Masoumi
,
M.
,
De Lima
,
N. B.
,
Tressia
,
G.
,
Sinatora
,
A.
, and
Goldenstein
,
H.
,
2019
, “
Microstructure and Crystallographic Orientation Evolutions Below the Superficial White Layer of a Used Pearlitic Rail
,”
J. Mater. Res. Technol.
,
8
(
6
), pp.
6275
6288
.
4.
Li
,
B.
,
Dai
,
C.
,
Ding
,
W.
,
Yang
,
C.
,
Li
,
C.
,
Kulik
,
O.
, and
Shumyacher
,
V.
,
2021
, “
Prediction on Grinding Force During Grinding Powder Metallurgy Nickel-Based Superalloy FGH96 With Electroplated CBN Abrasive Wheel
,”
Chin. J. Aeronaut.
,
34
(
8
), pp.
65
74
.
5.
Murtagian
,
G. R.
,
Hecker
,
R. L.
,
Liang
,
S. Y.
, and
Danyluk
,
S.
,
2010
, “
Plastic Deformation Depth Modeling on Grinding of Gamma Titanium Aluminides
,”
Int. J. Adv. Manuf. Technol.
,
49
(
1–4
), pp.
89
95
.
6.
Abdel-Aal
,
H. A.
,
2003
, “
On the Interdependence Between Kinetics of Friction-Released Thermal Energy and the Transition in Wear Mechanisms During Sliding of Metallic Pairs
,”
Wear
,
254
(
9
), pp.
884
900
.
7.
Doman
,
D. A.
,
Warkentin
,
A.
, and
Bauer
,
R.
,
2009
, “
Finite Element Modeling Approaches in Grinding
,”
Int. J. Mach. Tools Manuf.
,
49
(
2
), pp.
109
116
.
8.
Jamshidi
,
H.
, and
Budak
,
E.
,
2020
, “
An Analytical Grinding Force Model Based on Individual Grit Interaction
,”
J. Mater. Process. Technol.
,
283
, p.
116700
.
9.
Hecker
,
R. L.
,
Liang
,
S. Y.
,
Wu
,
X. J.
,
Xia
,
P.
, and
Jin
,
D. G. W.
,
2007
, “
Grinding Force and Power Modeling Based on Chip Thickness Analysis
,”
Int. J. Adv. Manuf. Technol.
,
33
(
5–6
), pp.
449
459
.
10.
Fergani
,
O.
,
Shao
,
Y.
,
Lazoglu
,
I.
, and
Liang
,
S. Y.
,
2014
, “
Temperature Effects on Grinding Residual Stress
,”
Proc. CIRP
,
14
(
6
), pp.
2
6
.
11.
Leonesio
,
M.
,
Parenti
,
P.
,
Cassinari
,
A.
,
Bianchi
,
G.
, and
Monno
,
M.
,
2012
, “
A Time-Domain Surface Grinding Model for Dynamic Simulation
,”
Proc. CIRP
,
4
(
10
), pp.
166
171
.
12.
Yi
,
H.
, and
Shang
,
C.
,
2024
, “
Simulation and Modeling of Grinding Surface Topography Based on Fractional Derivatives
,”
Measurement
,
228
, p.
114324
.
13.
Pratap
,
A.
,
Patra
,
K.
, and
Dyakonov
,
A. A.
,
2019
, “
A Comprehensive Review of Micro-Grinding: Emphasis on Toolings, Performance Analysis, Modeling Techniques, and Future Research Directions
,”
Int. J. Adv. Manuf. Technol.
,
104
(
1–4
), pp.
63
102
.
14.
Gahr
,
K.-H. Z.
,
1998
, “
Wear by Hard Particles
,”
Tribol. Int.
,
31
(
10
), pp.
587
596
.
15.
Vinay
,
P. V.
, and
Rao
,
C. S.
,
2013
, “
Grinding Mechanics and Advances—A Review
,”
J. Mech. Eng. Technol.
,
5
(
2
), pp.
41
74
.
16.
Jiang
,
J.
, and
Stack
,
M. M.
,
2006
, “
Modelling Sliding Wear: From Dry to Wet Environments
,”
Wear
,
261
(
9
), pp.
954
965
.
17.
Mouralova
,
K.
,
Zahradnicek
,
R.
,
Benes
,
L.
, and
Fries
,
J.
,
2024
, “
Analysis of Spherical Chips After Grinding
,”
Measurement
,
229
, p.
114401
.
18.
Gahr
,
K. H. Z.
,
1988
, “
Modelling of Two-Body Abrasive Wear
,”
Wear
,
124
(
1
), pp.
87
103
.
19.
Jacobson
,
S.
,
Wallén
,
P.
, and
Hogmark
,
S.
,
1988
, “
Fundamental Aspects of Abrasive Wear Studied by a New Numerical Simulation Model
,”
Wear
,
123
(
2
), pp.
207
223
.
20.
Franco
,
L. A.
, and
Sinatora
,
A.
,
2017
, “
Material Removal Factor (Fab): A Critical Assessment of Its Role in Theoretical and Practical Approaches to Abrasive Wear of Ductile Materials
,”
Wear
,
382–383
, pp.
51
61
.
21.
Abdel-Aal
,
H. A.
,
2010
, “
Influence of Frictional Energy Dissipation on Wear Regime Transition in Dry Tribo-Systems
,”
Int. J. Mater. Prod. Technol.
,
38
(
1
), pp.
78
92
.
22.
Abdel-Aal
,
H. A.
,
2005
, “
On the Role of Intrinsic Material Response in Failure of Tribo Systems
,”
Wear
,
259
(
7–12
), pp.
1372
1381
.
23.
Kennedy
,
F. E.
,
Lu
,
Y.
, and
Baker
,
I.
,
2015
, “
Contact Temperatures and Their Influence on Wear During Pin-on-Disk Tribotesting
,”
Tribol. Int.
,
82
(
Part B
), pp.
534
542
.
24.
Valdés Canaval
,
M. A.
,
Gómez
,
L. M.
,
Toro
,
A.
,
Cesar
,
M.
, and
Rudas
,
J. S.
,
2021
, “
Dynamic Model for Friction—Induced Oxidation of Metals in Dry Sliding Processes
,”
ASME J. Tribol.
,
143
(
8
), p.
081704
.
25.
Thiercelin
,
L.
,
Saint-Aimé
,
L.
,
Lebon
,
F.
, and
Saulot
,
A.
,
2020
, “
Thermomechanical Modelling of the Tribological Surface Transformations in the Railroad Network (White Etching Layer)
,”
Mech. Mater.
,
151
, p.
103636
.
26.
Ramesh
,
A.
, and
Melkote
,
S. N.
,
2008
, “
Modeling of White Layer Formation Under Thermally Dominant Conditions in Orthogonal Machining of Hardened AISI 52100 Steel
,”
Int. J. Mach. Tools Manuf.
,
48
(
3–4
), pp.
402
414
.
27.
Thiercelin
,
L.
,
Cazottes
,
S.
,
Merino
,
P.
,
Saulot
,
A.
, and
Lebon
,
F.
,
2023
, “
Mechanical White Etching Layer Formation Kinetics in Pearlitic Steels: A Phenomenological Model Based on Microstructural Characterization
,”
Wear
,
514–515
, p.
204585
.
28.
Lian
,
Q.
,
Zhu
,
H.
,
Deng
,
G.
,
Wang
,
X.
,
Li
,
H.
,
Wang
,
X.
, and
Liu
,
Z.
,
2022
, “
Evolution of Thermally Induced White Etching Layer at Rail Surface During Multiple Wheel/Train Passages
,”
Int. J. Fatigue
,
159
, p.
106799
.
29.
Freisinger
,
M.
,
Rojacz
,
H.
,
Pichelbauer
,
K.
,
Trausmuth
,
A.
,
Trummer
,
G.
,
Six
,
K.
, and
Mayrhofer
,
P. H.
,
2023
, “
Comparative Study on the Influence of Initial Deformation and Temperature of Thermally Induced White Etching Layers on Rail Wheels
,”
Tribol. Int.
,
177
, p.
107990
.
30.
Zhou
,
K.
,
Ding
,
H.
,
Steenbergen
,
M.
,
Wang
,
W.
,
Guo
,
J.
, and
Liu
,
Q.
,
2021
, “
Temperature Field and Material Response as a Function of Rail Grinding Parameters
,”
Int. J. Heat Mass Transfer
,
175
, p.
121366
.
31.
Bedoya-Zapata
,
A. D.
,
León-Henao
,
H.
,
Mesaritis
,
M.
,
Molina
,
L. F.
,
Palacio
,
M.
,
Santa
,
J. F.
,
Rudas
,
J. S.
,
Toro
,
A.
, and
Lewis
,
R.
,
2022
, “
White Etching Layer (WEL) Formation in Different Rail Grades After Grinding Operations in the Field
,”
Wear
,
502–503
, p.
204371
.
32.
Panda
,
A.
,
Davis
,
L.
,
Ramkumar
,
P.
, and
Amirthalingam
,
M.
,
2024
, “
The Role of Retained Austenite Against Hydrogen Embrittlement and White Etching Area Formation in Bearing Steel Under Dynamic Loading
,”
Int. J. Hydrogen Energy
,
58
, pp.
1359
1371
.
33.
Zhou
,
K.
,
Ding
,
H.
,
Wang
,
R.
,
Yang
,
J.
,
Guo
,
J.
,
Liu
,
Q.
, and
Wang
,
W.
,
2020
, “
Experimental Investigation on Material Removal Mechanism During Rail Grinding at Different Forward Speeds
,”
Tribol. Int.
,
143
(
3
), p.
106040
.
34.
Ashby
,
M. F.
,
1992
, “
Physical Modelling of Materials Problems
,”
Mater. Sci. Technol.
,
8
(
2
), pp.
102
111
.
35.
Alvarez
,
H.
,
Lamanna
,
R.
,
Vega
,
P.
, and
Revollar
,
S.
,
2009
, “
Metodología Para La Obtención de Modelos Semifísicos de Base Fenomenológica Aplicada a Una Sulfitadora de Jugo de Caña de Azúcar
,”
Rev. Iberoam. Autom. Inf. Ind.
,
6
(
3
), pp.
10
20
.
36.
Ljung
,
L.
, and
Glad
,
T.
,
1994
,
Modeling of Dynamic Systems
,
Prentice-Hall
,
Hoboken, NJ
.
37.
Rudas
,
J. S.
,
2018
, “
Dry Sliding Metals Process Modelling : Dynamical System Paradigm
,”
Universidad Nacional de Colombia
,
Medellín, Colombia
.
38.
Rabinowicz
,
E.
,
1965
,
Friction and Wear Materials
,
Wiley-Interscience
,
New York
.
39.
Avrami
,
M.
,
1941
, “
Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III
,”
J. Chem. Phys.
,
9
(
2
), pp.
177
184
.
40.
Koistinen
,
D. P.
, and
Marburger
,
R. E.
,
1959
, “
A General Equation Prescribing the Extent of the Austenite-Martensite Transformation in Pure Iron-Carbon Alloys and Plain Carbon Steels
,”
Acta Metall.
,
7
(
1
), pp.
59
60
.
41.
Farjas
,
J.
, and
Roura
,
P.
,
2006
, “
Modification of the Kolmogorov-Johnson-Mehl-Avrami Rate Equation for Non-Isothermal Experiments and Its Analytical Solution
,”
Acta Mater.
,
54
(
20
), pp.
5573
5579
.
42.
Caballero
,
F. G.
,
1999
, “
Modelización de Las Transformaciones de Fase En Calentamiento Continuo de Aceros Con Microestructura Inicial de Ferrita, Perlita y y Ferrita-Perlita
.
43.
Payson
,
P.
,
1962
,
The Metallurgy of Tool Steels
,
Wiley
,
California
.
44.
Gyhlesten Back
,
J.
,
Hutchinson
,
B. P.
,
Lindgren
,
L.-E. P.
,
Engberg
,
G.
, and
Lindgren
,
L.-E.
,
2017
, “
Modelling and Characterisation of the Martensite Formation in Low Alloyed Carbon Steels
.
45.
Liu
,
Y.
,
2008
, “Thermodynamics of the Shape Memory Effect in Ti-Ni Alloys,”
Shape Memory Alloys for Biomedical Applications
,
T.
Yoneyama
and
S.
Miyazaki
, eds.,
Woodhead Publishing
,
Cambridge
, pp.
37
68
.
46.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
Malta
.
47.
Wang
,
K. F.
, and
Yang
,
H. T. Y.
,
1997
, “
Experimental and Computational Study of the Quenching of Carbon Steel
,”
ASME J. Manuf. Sci. Eng.
,
119
(
3
), pp.
257
265
.
48.
Lebedev
,
V.
,
Klimenko
,
N.
,
Uryadnikova
,
I.
,
Chumachenko
,
T.
, and
Ovcharenko
,
A.
,
2017
, “
Martensite Transformations in the Surface Layer at Grinding of Parts of Hardened Steels
,”
Eastern-European J. Enterp. Technol.
,
3
(
12 (87)
), pp.
56
63
.
49.
Payares-Asprino
,
M. C.
,
Katsumoto
,
H.
, and
Liu
,
S.
,
2008
, “
Effect of Martensite Start and Finish Temperature on Residual Stress Development in Structural Steel Welds
,”
Weld. J.
,
87
(
11
), pp.
279
290
.
50.
Zhang
,
W.
,
Zhang
,
P.
,
Zhang
,
J.
,
Fan
,
X.
, and
Zhu
,
M.
,
2020
, “
Probing the Effect of Abrasive Grit Size on Rail Grinding Behaviors
,”
J. Manuf. Processes
,
53
, pp.
388
395
.
51.
Wang
,
W. J.
,
Gu
,
K. K.
,
Zhou
,
K.
,
Cai
,
Z. B.
,
Guo
,
J.
, and
Liu
,
Q. Y.
,
2018
, “
Influence of Granularity of Grinding Stone on Grinding Force and Material Removal in the Rail Grinding Process
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
233
(
2
), pp.
355
365
.
You do not currently have access to this content.