Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

In response to the rapid failure of grease lubrication under low surface speed with zero entraining velocity, a common occurrence in ball screws or cageless rolling element bearings, detailed observations were conducted through optical interferometric experiments. It was observed that despite a constant surface speed and load, the motion remained transient due to the transition between outlet cavitation and inlet starvation. The reciprocating motion of the cavitation zone rapidly depleted the contact area, leading to severe surface peeling. However, as the surface speed increased, this phenomenon was alleviated and eventually disappeared. To enhance lubrication performance, bilateral grooves were created using laser technology, proving to be advantageous for grease lubrication life under low surface speed conditions. Despite the occurrence of rapid surface failure, grease lubrication demonstrated clear benefits over oil lubrication when operating at low surface speeds.

References

1.
Yang
,
P. R.
,
Qu
,
S. Y.
,
Chang
,
Q. Y.
, and
Guo
,
F.
,
2001
, “
On the Theory of Thermal Elastohydrodynamic Lubrication at High Slide-Roll Ratios – Line Contact Solution
,”
ASME J. Tribol.
,
123
(
1
), pp.
36
41
.
2.
Yagi
,
K.
,
Kyogoku
,
K.
, and
Nakahara
,
T.
,
2005
, “
Relationship Between Temperature Distribution in EHL Film and Dimple Formation
,”
ASME J. Tribol.
,
127
(
3
), pp.
658
665
.
3.
Zhang
,
B. B.
,
Wang
,
J.
,
Omasta
,
M.
, and
Kaneta
,
K.
,
2016
, “
Variation of Surface Dimple in Point Contact Thermal EHL Under ZEV Condition
,”
Tribol. Int.
,
94
, pp.
383
394
.
4.
Zhang
,
B. B.
,
Wang
,
J.
,
Omasta
,
M.
, and
Kaneta
,
K.
,
2015
, “
Effect of Fluid Rheology on the Thermal EHL Under ZEV in Line Contact
,”
Tribol. Int.
,
87
, pp.
40
49
.
5.
Meng
,
X. H.
,
Wang
,
J.
,
Zhang
,
B. B.
, and
Zou
,
Q.
,
2017
, “
Effect of Oil Starvation on the Surface Dimple in Elastohydrodynamic Lubrication Contact Under Opposite Sliding Conditions
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
231
(
8
), pp.
1016
1029
.
6.
Jin
,
X. Y.
,
Wang
,
J.
,
Han
,
Y. M.
,
Sun
,
N. N.
, and
Zhu
,
J. R.
,
2021
, “
Discrepancy in Oil Film Distribution Observed in ZEV Reciprocating Motion
,”
Ind. Lubr. Tribol.
,
73
(
1
), pp.
177
189
.
7.
Cen
,
H.
,
Lugt
,
P. M.
, and
Morales-Espejel
,
G.
,
2014
, “
On the Film Thickness of Grease-Lubricated Contacts at Low Speeds
,”
Tribol. Trans.
,
57
(
4
), pp.
668
678
.
8.
De Laurentis
,
N.
,
Kadiric
,
A.
,
Lugt
,
P.
, and
Cann
,
P.
,
2016
, “
The Influence of Bearing Grease Composition on Friction in Rolling/Sliding Concentrated Contacts
,”
Tribol. Int.
,
94
, pp.
624
632
.
9.
Kanazawa
,
Y.
,
Sayles
,
R. S.
, and
Kadiric
,
A.
,
2017
, “
Film Formation and Friction in Grease Lubricated Rolling-Sliding Non-Conformal Contacts
,”
Tribol. Int.
,
109
, pp.
505
518
.
10.
Wang
,
S. S.
,
Wang
,
J.
,
Han
,
Y. M.
, and
Li
,
W. M.
,
2019
, “
Variation of Zero Entraining Velocity Dimple in Grease-Lubricated Reciprocating Motion
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
233
(
11
), pp.
1661
1687
.
11.
Han
,
Y. M.
,
Wang
,
J.
,
Jin
,
X. Y.
,
Wang
,
S. S.
, and
Zhang
,
R.
,
2021
, “
Effects of Slide-to-Roll Ratio and Varying Velocity on the Lubrication Performance of Grease at Low Speed
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
235
(
10
), pp.
2122
2136
.
12.
Chatra
,
K. R. S.
, and
Lugt
,
P. M.
,
2021
, “
The Process of Churning in a Grease Lubricated Rolling Bearing: Channeling and Clearing
,”
Tribol. Int.
,
153
, p.
106661
.
13.
Zhou
,
Y.
, and
Lugt
,
P. M.
,
2020
, “
On the Application of the Mechanical Aging Master Curve for Lubricating Greases to Rolling Bearings
,”
Tribol. Int.
,
141
, p.
105918
.
14.
Cen
,
H.
, and
Lugt
,
P. M.
,
2021
, “
Effect of Start-Stop Motion on Contact Replenishment in a Grease Lubricated Deep Groove Ball Bearing
,”
Tribol. Int.
,
157
, p.
106882
.
15.
Liu
,
H. C.
,
Guo
,
F.
,
Guo
,
L.
, and
Wong
,
P. L.
,
2015
, “
A Dichromatic Interference Intensity Modulation Approach to Measurement of Lubricating Film Thickness
,”
Tribol. Lett.
,
58
(
1
), p.
15
.
16.
Yonggang
,
M.
, and
Jie
,
Z.
,
1998
, “
A Rheological Model for Lithium Lubricating Grease
,”
Tribol. Int.
,
31
(
10
), pp.
619
625
.
17.
Cen
,
H.
,
Lugt
,
P. M.
, and
Morales-Espejel
,
G.
,
2014
, “
Film Thickness of Mechanically Worked Lubricating Grease at Very Low Speeds
,”
Tribol. Trans.
,
57
(
6
), pp.
1066
1071
.
18.
Cyriac
,
F.
,
Lugt
,
P. M.
,
Bosman
,
R.
,
Padberg
,
C. J.
, and
Venner
,
C. H.
,
2016
, “
Effect of Thickener Particle Geometry and Concentration on the Grease EHL Film Thickness at Medium Speeds
,”
Tribol. Lett.
,
61
(
2
), p.
18
.
19.
Gropper
,
D.
,
Wang
,
L.
, and
Harvey
,
T. J.
,
2016
, “
Hydrodynamic Lubrication of Textured Surfaces: A Review of Modeling Techniques and Key Findings
,”
Tribol. Int.
,
94
, pp.
509
529
.
20.
Ta
,
V. D.
,
Dunn
,
A.
,
Wasley
,
T. J.
,
Li
,
J.
,
Kay
,
R. W.
,
Stringer
,
J.
,
Smith
,
P. J.
,
Esenturk
,
E.
,
Connaughton
,
C.
, and
Shephard
,
J. D.
,
2016
, “
Laser Textured Surface Gradients
,”
Appl. Surf. Sci.
,
371
, pp.
583
589
.
21.
Yagi
,
K.
,
Matsunaka
,
W.
, and
Sugimura
,
J.
,
2021
, “
Impact of Textured Surfaces in Starved Hydrodynamic Lubrication
,”
Tribol. Int.
,
154
, p.
106756
.
You do not currently have access to this content.