Abstract

In practice, it is difficult to avoid the axis angle deviation when some regular surfaces are in micro-sliding, such as gears and machined surfaces. In order to better investigate the micro-motion contact characteristics, a crossed paraboloidal contact model under frictional condition is proposed to simulate both tangential displacement-controlled fretting and the evolution of the energy dissipation in a load cycle. By deriving the theoretical of the normal and tangential contact course of the model, the load–displacement curves during initial loading, unloading, and reloading stage are presented. On this basis, the hysteresis curve is then obtained by integrating the closed area surrounded by load–displacement during unloading and reloading, which also means that the empirical formulation for microslip in a load cycle is constructed. This study also reveals the plastic yield phenomenon under pure normal loading and plastic shakedown behavior caused by cyclic reciprocating displacement loads. In addition, the research on the junction growth, the evolution of tangential load, and hysteresis curve with different COFs under multiple-cycle load is also carried out. The implications of involved parameters, such as friction coefficient, axis intersection angle, normal load, and so on, are discussed with respect to hysteresis curve shape and energy dissipation. The difference in hysteresis and energy dissipation curves between the paraboloidal contact model and other classic contact models is then presented. It is discovered by comparison with other models that the paraboloidal contact model presents a relatively high energy dissipation in a load cycle.

References

1.
Cheng
,
Q.
,
Qi
,
B.
,
Liu
,
Z.
,
Zhang
,
C.
, and
Xue
,
D.
,
2019
, “
An Accuracy Degradation Analysis of Ball Screw Mechanism Considering Time-Varying Motion and Loading Working Conditions
,”
Mech. Mach. Theory
,
134
(
4
), pp.
1
23
.
2.
Zhang
,
Z.
,
Cheng
,
Q.
,
Qi
,
B.
, and
Tao
,
Z.
,
2021
, “
A General Approach for the Machining Quality Evaluation of S-Shaped Specimen Based on POS-SQP Algorithm and Monte Carlo Method
,”
J. Manuf. Syst.
,
60
(
4
), pp.
553
568
.
3.
Cattaneo
,
C.
,
1938
, “
Sul Contatto di due Corpi Elastici: Distribuzione Locale Degli Sforzi
,”
Rc. Accad. Naz. Lincei.
,
27
(
2
), pp.
474
478
.
4.
Mindlin
,
R. D.
,
1949
, “
Compliance of Elastic Bodies in Contact
,”
ASME J. Appl. Mech.
,
16
(
3
), pp.
259
268
.
5.
Mindlin
,
R. D.
,
Mason
,
W. P.
,
Osmer
,
T. F.
, and
Deresiewicz
,
H.
,
1952
, “
Effects of an Oscillating Tangential Force on the Contact Surfaces of Elastic Spheres
,”
Proceedings of the First US National Congress of Applied Mechanics
,
Chicago, IL
,
June 11–16
,
New York
, pp.
203
208
.
6.
Ödfalk
,
M.
, and
Vingsbo
,
O.
,
1992
, “
An Elastic–Plastic Model for Fretting Contact
,”
Wear
,
157
(
2
), pp.
435
444
.
7.
Mindlin
,
R. D.
, and
Deresiewicz
,
H.
,
1953
, “
Elastic Spheres in Contact Under Varying Oblique Forces
,”
Japplmechasme
,
20
(
3
), pp.
327
344
.
8.
Goodman
,
L. E.
, and
Brown
,
C. B.
,
1962
, “
Energy Dissipation in Contact Friction: Constant Normal and Cyclic Tangential Loading
,”
ASME J. Appl. Mech.
,
29
(
4
), p.
763
764
.
9.
Burdekin
,
M.
,
Cowley
,
N.
, and
Back
,
1978
, “
An Elastic Mechanism for the Microsliding Characteristics Between Contacting Machined Surfaces
,”
J. Mech. Eng.
,
20
(
3
), pp.
121
127
.
10.
Sellgren
,
U.
, and
Olofsson
,
U.
,
1999
, “
Application of a Constitutive Model for Micro-Slip in Finite Element Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
170
(
1-2
), pp.
65
77
.
11.
Hagman
,
L.
,
1993
, “
Micro-Slip and Surface Deformation
,”
Licentiate thesis
,
Department of Machine Elements, Royal Institute of Technology
,
Stockholm, Sweden
.
12.
Olofsson
,
U.
,
1995
, “
Cyclic Micro-Slip Under Unlubricated Conditions
,”
Tribol. Int.
,
28
(
4
), pp.
207
217
.
13.
Johnson
,
K.
,
1997
, “
Adhesion and Friction Between a Smooth Elastic Spherical Asperity and a Plane Surface
,”
Proc. the Royal Soc. London A: Math. Phys. Eng. Sci.
,
453
(
1956
), pp.
163
179
.
14.
Popov
,
V. L.
,
Lyashenko
,
I. A.
, and
Filippov
,
A. E.
,
2017
, “
Influence of Tangential Displacement on the Adhesion Strength of a Contact Between a Paraboloidal Profile and an Elastic Half- Space
,”
Royal Soc. Open Sci.
,
4
(
8
), p.
161010
.
15.
Olofsson
,
U.
, and
Hagman
,
L.
,
1997
, “
A Model for Micro-Slip Between Flat Surfaces Based on Deformation of Ellipsoidal Elastic Bodies
,”
Tribol. Int.
,
30
(
8
), pp.
599
603
.
16.
Borri-Brunetto
,
M.
,
Carpinteri
,
A.
,
Invernizzi
,
S.
, and
Paggi
,
M.
,
2006
, “Micro-Slip of Rough Surfaces Under Cyclic Tangential Loading,”
Analysis and Simulation of Contact Problems. Lecture Notes in Applied and Computational Mechanics
, Vol.
27
,
P.
Wriggers
, and
U.
Nackenhorst
, eds.,
Springer
,
Berlin/Heidelberg
.
17.
Tabor
,
D.
,
1995
, “
Junction Growth in Metallic Friction: The Role of Combined Stresses and Surface Contamination
,”
Proc. R. Soc. Lond. A Math. Phys. Eng. Sci.
,
251
(
1266
), pp.
378
393
.
18.
Parker
,
R.
, and
Hatch
,
D.
,
1950
, “
The Static Coefficient of Friction and the Area of Contact
,”
Proc. Phys. Soc. B.
,
63
(
3
), p.
185
.
19.
McColl
,
I.
,
Ding
,
J.
, and
Leen
,
S.
,
2004
, “
Finite Element Simulation and Experimental Validation of Fretting Wear
,”
Wear
,
256
(
11–12
), pp.
1114
1127
.
20.
Hagman
,
L. A.
, and
Olofsson
,
U.
,
1998
, “
A Model for Micro-Slip Between Flat Surfaces Based on Deformation of Ellipsoidal Elastic Asperities—Parametric Study and Experimental Investigation
,”
Tribol. Int.
,
31
(
4
), pp.
209
217
.
21.
Kim
,
D.-G.
, and
Lee
,
Y.-Z.
,
2001
, “
Experimental Investigation on Sliding and Fretting Wear of Steam Generator Tube Materials
,”
Wear
,
250
(
1–12
), pp.
673
680
.
22.
Zhu
,
M.
,
Zhou
,
Z.
,
Kapsa
,
P.
, and
Vincent
,
L.
,
2001
, “
An Experimental Investigation on Composite Fretting Mode
,”
Tribol. Int.
,
34
(
11
), pp.
733
738
.
23.
Barber
,
J. R.
, and
Ciavarella
,
M.
,
2000
, “
Contact Mechanics
,”
Int. J. Solids Struct.
,
37
(
s 1–2
), pp.
29
43
.
24.
Chen
,
W.W.
,
Wang
,
Q. J.
,
Wang
,
F.
,
Keer
,
L. M.
, and
Cao
,
J.
,
2008
, “
Three-Dimensional Repeated Elasto-Plastic Point Contacts, Rolling, and Sliding
,”
ASME J. Appl. Mech.
,
75
(
2
), p. 021021.
25.
Martin
,
J. B.
,
1975
,
Plasticity: Fundamentals and General Results
,
MIT Press
,
Cambridge, MA
.
26.
Johnson
,
K. L.
, and
Shercliff
,
H. R.
,
1992
, “
Shakedown of 2-Dimensional Asperities in Sliding Contact
,”
Int. J. Mech. Sci.
,
34
(
5
), pp.
375
394
.
27.
Kapoor
,
A.
, and
Johnson
,
K. L.
,
1992
, “
Effect of Changes in Contact Geometry on Shakedown of Surfaces in Rolling/Sliding Contact
,”
Int. J. Mech. Sci.
,
34
(
3
), pp.
223
239
.
28.
Aizhong
,
W. U.
,
Qian
,
H.
, and
Dongliang
,
F. U.
,
2015
, “
Research on the Fretting Contact Between an Elastic-Plastic Hemisphere and a Rigid Flat
,”
J. Mech. Eng.
,
51
(
5
), pp.
105
113
.
29.
Yang
,
H.
, and
Green
,
I.
,
2019
, “
A Fretting Finite Element Investigation of a Plane-Strain Cylindrical Contact of Inconel 617/Incoloy 800H at Room and High Temperatures
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
233
(
4
), pp.
553
569
.
30.
Yang
,
H.
, and
Green
,
I.
,
2018
, “
An Elasto-Plastic Finite Element Study of Displacement-Controlled Fretting in a Plane-Strain Cylindrical Contact. ASME Trans
,”
ASME J. Tribol.
,
140
(
4
), p.
041401
.
31.
Yang
,
H.
, and
Green
,
I.
,
2019
, “
Analysis of Displacement-Controlled Fretting Between a Hemisphere and a Flat Block in Elasto-Plastic Contacts
,”
ASME J. Tribol.
,
141
(
3
), p.
031401
.
32.
Ghosh
,
A.
,
Leonard
,
B.
, and
Sadeghi
,
F.
,
2013
, “
A Stress Based Damage Mechanics Model to Simulate Fretting Wear of Hertzian Line Contact in Partial Slip
,”
Wear
,
307
(
1
), pp.
87
99
.
33.
Stuermann
,
E.
, and
Shtaerman
,
I. Y.
,
1939
, “
On Hertz Theory of Local Deformation of Compressed Bodies
,”
Comptes Rendus (Doklady) de l’Acade ´mie des Sciences de l’URSS
,
25
(
5
), pp.
359
361
.
34.
Vingsbo
,
O.
, and
Söderberg
,
S.
,
1988
, “
On Fretting Maps
,”
Wear
,
126
(
2
), pp.
131
147
.
35.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
36.
Guo
,
T.
,
Hua
,
X.
,
Yan
,
Z.
,
Meng
,
L.
, and
Peng
,
L.
,
2021
, “
Study of a Paraboloidal Cylinder Elastic-Plastic Contact Model
,”
Adv. Mech. Eng.
,
13
(
10
), pp.
1
12
.
37.
Guo
,
T.
,
Ji
,
R.
,
Peng
,
L.
, and
Hua
,
X.
,
2022
, “
Analysis of Tangential Characteristics of the Paraboloidal Contact Model
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
236
(
11
), pp.
6152
6169
. 09544062211064124
38.
Deresiewicz
,
H.
,
1957
, “
Oblique Contact of Nonspherical Elastic Bodies
,”
ASME J. Appl. Mech.
,
24
(
4
), pp.
623
624
.
39.
Eriten
,
M.
,
Polycarpou
,
A. A.
, and
Bergman
,
L. A.
,
2010
, “
Physics-Based Modeling for Partial Slip Behavior of Spherical Contacts
,”
Int. J. Solids Struct.
,
47
(
18-19
), pp.
2554
2567
.
40.
Yang
,
H.
, and
Green
,
I.
,
2019
, “
Fretting Wear Modeling of Cylindrical Line Contact in Plane-Strain Borne by the Finite Element Method
,”
ASME J. Appl. Mech.
,
86
(
6
), p. 061012.
41.
Li
,
Z.
,
Zhu
,
M.
, and
Zhou
,
Z.
,
2005
, “
Study on Composite Fretting Wear Behaviors of 60 Si 2 Mn Steel
,”
Jixie Gongcheng Xuebao(Chinese Journal of Mechanical Engineering)(China)
,
41
(
1
), pp.
203
207
.
42.
Burwell
,
J. T.
, and
Rabinowicz
,
E.
,
1953
, “
The Nature of the Coefficient of Friction
,”
J. Appl. Phys.
,
24
(
2
), pp.
136
139
.
43.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1988
, “
Static Friction Coefficient Model for Metallic Rough Surfaces
,”
ASME, J. Tribol.
,
110
(
1
), pp.
57
63
.
44.
Kogut
,
L.
, and
Etsion
,
I.
,
2003
, “
A Semi-Analytical Solution for the Sliding Inception of a Spherical Contact
,”
ASME, J. Tribol.
,
125
(3), pp.
499
506
.
45.
Brizmer
,
V.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2007
, “
Elastic–Plastic Spherical Contact Under Combined Normal and Tangential Loading in Full Stick
,”
Tribol. Lett.
,
25
(
1
), pp.
61
70
.
You do not currently have access to this content.