Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The major goal of the present study is to develop a computational design framework for the active control of hydrodynamically lubricated interfaces. The framework ultimately delivers an electrode distribution on an elastomeric substrate such that a voltage-controlled texture may be induced on its surface. This enables the setup to attain a desired time-dependent macroscopic lubrication response. The computational framework is based on a numerically efficient two-stage design approach. In the first stage, a topology optimization framework is introduced for determining a microscopic texture and the uniform modulation of its amplitude. The objective is to attain the targeted fluid flux or frictional traction signals based on the homogenization-based macroscopic response of the texture. As a minor goal, a novel unit cell geometry optimization feature will be developed which will enable working in a design space that is as unrestricted as possible. The obtained designs are then transferred to the second stage where the electrode distribution on a soft substrate is determined along with the voltage variation that delivers the desired amplitude variation. The first stage operates in a two-dimensional setting based on the Reynolds equation whereas the second stage operates in a three-dimensional setting based on an electroelasticity formulation. The two stages are heuristically coupled by transferring the texture topology to the electrode distribution through a projection step. The viability of such an active lubrication interface design approach is demonstrated through numerous examples that methodically investigate the central features of the overall computational framework.

References

1.
Hamrock
,
B. J.
,
Schmid
,
S. R.
, and
Jacobson
,
B. O.
,
2004
,
Fundamentals of Fluid Film Lubrication
, 2nd ed.,
Marcel Dekker
,
New York
.
2.
Szeri
,
A. Z.
,
2011
,
Fluid Film Lubrication
, 2nd ed.,
Cambridge University Press
,
New York
.
3.
Visschers
,
F. L. L.
,
Gojzewski
,
H.
,
Vancso
,
G. J.
,
Broer
,
D. J.
, and
Liu
,
D.
,
2019
, “
Oscillating Surfaces Fueled by a Continuous AC Electric Field
,”
Adv. Mater. Interfaces
,
6
(
21
), p.
1901292
.
4.
Visschers
,
F. L. L.
,
Broer
,
D. J.
, and
Liu
,
D.
,
2021
, “
Programmed Topographical Features Generated on Command in Confined Electroactive Films
,”
Soft Matter
,
17
(
31
), pp.
7247
7251
.
5.
Jackson
,
R. L.
,
2005
, “
Self Adapting Mechanical Step Bearings for Variations in Load
,”
Tribol. Lett.
,
20
(
1
), pp.
11
20
.
6.
Jackson
,
R. L.
, and
Lei
,
J.
,
2014
, “
Hydrodynamically Lubricated and Grooved Biomimetic Self-adapting Surfaces
,”
J. Funct. Biomater.
,
5
(
2
), pp.
78
98
.
7.
Murashima
,
M.
,
Imaizumi
,
Y.
,
Murase
,
R.
,
Umehara
,
N.
,
Tokoroyama
,
T.
,
Saito
,
T.
, and
Takeshima
,
M.
,
2021
, “
Active Friction Control in Lubrication Condition Using Novel Metal Morphing Surface
,”
Tribol. Int.
,
156
, p.
106827
.
8.
Duvvuru
,
R. S.
,
Jackson
,
R. L.
, and
Hong
,
J. W.
,
2009
, “
Self-Adapting Microscale Surface Grooves for Hydrodynamic Lubrication
,”
Tribol. Trans.
,
52
(
1
), pp.
1
11
.
9.
Fesanghary
,
M.
, and
Khonsari
,
M. M.
,
2010
, “
On Self-adaptive Surface Grooves
,”
Tribol. Trans.
,
53
(
6
), pp.
871
880
.
10.
Fesanghary
,
M.
, and
Khonsari
,
M. M.
,
2011
, “
On the Shape Optimization of Self-adaptive Grooves
,”
Tribol. Trans.
,
54
(
2
), pp.
256
264
.
11.
Santos
,
I. F.
,
2018
, “
Controllable Sliding Bearings and Controllable Lubrication Principles—An Overview
,”
Lubricants
,
6
(
1
), p.
16
.
12.
Rehman
,
W. U.
,
Jiang
,
G.
,
Luo
,
Y.
,
Wang
,
Y.
,
Khan
,
W.
,
Rehman
,
S. U.
, and
Iqbal
,
N.
,
2018
, “
Control of Active Lubrication for Hydrostatic Journal Bearing by Monitoring Bearing Clearance
,”
Adv. Mech. Eng.
,
10
(
4
), pp.
1
17
.
13.
S. Li
,
A. B.
,
Shutin
,
D.
,
Kazakov
,
Y.
,
Liu
,
Y.
,
Chen
,
Z.
, and
Savin
,
L.
,
2022
, “
Active Hybrid Journal Bearings With Lubrication Control: Towards Machine Learning
,”
Tribol. Int.
,
175
, p.
107805
.
14.
Baroud
,
C.
,
Busch-Vishniac
,
I.
, and
Wood
,
K.
,
2000
, “
Induced Micro-variations in Hydrodynamic Bearings
,”
ASME J. Tribol.
,
122
(
3
), pp.
585
589
.
15.
Leist
,
S. K.
,
Gao
,
D.
,
Chiou
,
R.
, and
Zhou
,
J.
,
2017
, “
Investigating the Shape Memory Properties of 4D Printed Polylactic Acid (PLA) and the Concept of 4D Printing Onto Nylon Fabrics for the Creation of Smart Textiles
,”
Virtual Phys. Protot.
,
12
(
4
), pp.
290
300
.
16.
Miao
,
W.
,
Zou
,
W.
,
Jin
,
B.
,
Ni
,
C.
,
Zheng
,
N.
,
Zhao
,
Q.
, and
Xie
,
T.
,
2020
, “
On Demand Shape Memory Polymer Via Light Regulated Topological Defects in a Dynamic Covalent Network
,”
Nat. Commun.
,
11
(
1
), p.
4257
.
17.
Kim
,
Y.
,
Yuk
,
H.
,
Zhao
,
R.
,
Chester
,
S. A.
, and
Zhao
,
X.
,
2018
, “
Printing Ferromagnetic Domains for Untethered Fast-Transforming Soft Materials
,”
Nature
,
558
(
7709
), pp.
274
279
.
18.
Reynolds
,
O.
,
1886
, “
On the Theory of Lubrication and Its Application to Mr. Beauchamp Tower’s Experiments, Including an Experimental Determination of the Viscosity of Olive Oil
,”
Philos. Trans. R. Soc.
,
177
, pp.
157
234
.
19.
Rayleigh
,
L.
,
1918
, “
I. Notes on the Theory of Lubrication
,”
Lond. Edinb. Dublin Philos. Mag. J. Sci.
,
35
(
205
), pp.
1
12
.
20.
Etsion
,
I.
,
2005
, “
State of the Art in Laser Surface Texturing
,”
ASME J. Tribol.
,
127
(
1
), pp.
248
253
.
21.
Gropper
,
D.
,
Wang
,
L.
, and
Harvey
,
T. J.
,
2016
, “
Hydrodynamic Lubrication of Textured Surfaces: A Review of Modeling Techniques and Key Findings
,”
Tribol. Int.
,
94
, pp.
509
529
.
22.
Gachot
,
C.
,
Rosenkranz
,
A.
,
Hsu
,
S. M.
, and
Costa
,
H. L.
,
2017
, “
A Critical Assessment of Surface Texturing for Friction and Wear Improvement
,”
Wear
,
372–373
, pp.
21
41
.
23.
Grützmacher
,
P. G.
,
Profito
,
F. J.
, and
Rosenkranz
,
A.
,
2019
, “
Multi-scale Surface Texturing in Tribology—Current Knowledge and Future Perspectives
,”
Lubricants
,
7
(
11
), p.
95
.
24.
Costa
,
H. L.
,
Schille
,
J.
, and
Rosenkranz
,
A.
,
2022
, “
Tailored Surface Textures to Increase Friction—A Review
,”
Friction
,
10
(
9
), pp.
1285
1304
.
25.
Marian
,
M.
,
Almqvist
,
A.
,
Rosenkranz
,
A.
, and
Fillon
,
M.
,
2022
, “
Numerical Micro-texture Optimization for Lubricated Contacts—A Critical Discussion
,”
Friction
,
10
(
11
), pp.
1772
1809
.
26.
Maday
,
C. J.
,
1968
, “
A Bounded Variable Approach to the Optimum Slider Bearing
,”
ASME J. Tribol.
,
90
(
1
), pp.
240
242
.
27.
Cusano
,
C.
, and
Wedeven
,
L. D.
,
1982
, “
The Effects of Artificially-Produced Defects on the Film Thickness Distribution in Sliding EHD Point Contacts
,”
ASME J. Tribol.
,
104
(
3
), pp.
365
375
.
28.
Lu
,
C.-J.
, and
Wang
,
T.-K.
,
2004
, “
New Designs of HDD Air-Lubricated Sliders Via Topology Optimization
,”
ASME J. Tribol.
,
126
(
1
), pp.
171
176
.
29.
Yoon
,
S.-J.
, and
Choi
,
D.-H.
,
2004
, “
Topology Designs of Slider Air Bearings
,”
ASME J. Tribol.
,
126
(
2
), pp.
342
346
.
30.
Hirani
,
H.
, and
Suh
,
N. P.
,
2005
, “
Journal Bearing Design Using Multiobjective Genetic Algorithm and Axiomatic Design Approaches
,”
Tribol. Int.
,
38
(
5
), pp.
481
491
.
31.
Zengeya
,
M.
, and
Gadala
,
M.
,
2007
, “
Optimization of Journal Bearings Using a Hybrid Scheme
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
221
(
5
), pp.
591
607
.
32.
Buscaglia
,
G. C.
,
Ausas
,
R. F.
, and
Jai
,
M.
,
2006
, “
Optimization Tools in the Analysis of Micro-textured Lubricated Devices
,”
Inverse Prob. Sci. Eng.
,
14
(
4
), pp.
365
378
.
33.
Dobrica
,
M. B.
,
Fillon
,
M.
,
Pascovici
,
M. D.
, and
Cicone
,
T.
,
2010
, “
Optimizing Surface Texture for Hydrodynamic Lubricated Contacts Using a Mass-Conserving Numerical Approach
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
224
(
8
), pp.
737
750
.
34.
Murthy
,
A. N.
,
Duwensee
,
M.
, and
Talke
,
F. E.
,
2010
, “
Numerical Simulation of the Head/Disk Interface for Patterned Media
,”
Tribol. Lett.
,
38
(
1
), pp.
47
55
.
35.
Scaraggi
,
M.
,
2014
, “
Optimal Textures for Increasing the Load Support in a Thrust Bearing Pad Geometry
,”
Tribol. Lett.
,
53
(
1
), pp.
127
143
.
36.
Uddin
,
M. S.
,
Ibatan
,
T.
, and
Shankar
,
S.
,
2017
, “
Influence of Surface Texture Shape
,,”
Lubr. Sci.
,
29
(
3
), pp.
153
181
.
37.
Ramesh
,
A.
,
Akram
,
W.
,
Mishra
,
S. P.
,
Cannon
,
A. H.
,
Polycarpou
,
A. A.
, and
King
,
W. P.
,
2013
, “
Friction Characteristics of Microtextured Surfaces Under Mixed and Hydrodynamic Lubrication
,”
Tribol. Int.
,
57
, pp.
170
176
.
38.
Morris
,
N.
,
Leighton
,
M.
,
De la Cruz
,
M.
,
Rahmani
,
R.
,
Rahnejat
,
H.
, and
Howell-Smith
,
S.
,
2015
, “
Combined Numerical and Experimental Investigation of the Micro-hydrodynamics of Chevron-Based Textured Patterns Influencing Conjunctional Friction of Sliding Contacts
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
229
(
4
), pp.
316
335
.
39.
Wang
,
W.
,
He
,
Y.
,
Zhao
,
J.
,
Mao
,
J.
,
Hu
,
Y.
, and
Luo
,
J.
,
2020
, “
Optimization of Groove Texture Profile to Improve Hydrodynamic Lubrication Performance: Theory and Experiments
,”
Friction
,
8
(
1
), pp.
83
94
.
40.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2004
,
Topology Optimization: Theory, Methods and Applications
, 2nd ed.,
Springer
,
Berlin/Heidelberg
.
41.
Christensen
,
P. W.
, and
Klarbring
,
A.
,
2010
,
An Introduction to Structural Optimization
,
Springer
,
New York
.
42.
Wu
,
J.
,
Sigmund
,
O.
, and
Groen
,
J. P.
,
2021
, “
Topology Optimization of Multi-scale Structures: A Review
,”
Struct. Multidiscipl. Optim.
,
63
, pp.
1455
1480
.
43.
Fesanghary
,
M.
, and
Khonsari
,
M. M.
,
2012
, “
Topological and Shape Optimization of Thrust Bearings for Enhanced Load-Carrying Capacity
,”
Tribol. Int.
,
53
, pp.
12
21
.
44.
Shen
,
C.
, and
Khonsari
,
M. M.
,
2015
, “
Numerical Optimization of Texture Shape for Parallel Surfaces Under Unidirectional and Bidirectional Sliding
,”
Tribol. Int.
,
82
, pp.
1
11
.
45.
Lee
,
Y. H.
,
Schuh
,
J. K.
,
Ewoldt
,
R. E.
, and
Allison
,
J. T.
,
2017
, “
Enhancing Full-Film Lubrication Performance Via Arbitrary Texture Design
,”
ASME J. Mech. Des.
,
139
(
5
), p.
053401
.
46.
Lee
,
Y. H.
,
Schuh
,
J. K.
,
Ewoldt
,
R. E.
, and
Allison
,
J. T.
,
2019
, “
Simultaneous Design of Non-Newtonian Lubricant and Surface Texture Using Surrogate-Based Multiobjective Optimization
,”
Struct. Multidiscipl. Optim.
,
60
, p.
99
.
47.
Codrignani
,
A.
,
Savio
,
D.
,
Pastewka
,
L.
,
Frohnapfel
,
B.
, and
van Ostayen
,
R.
,
2020
, “
Optimization of Surface Textures in Hydrodynamic Lubrication Through the Adjoint Method
,”
Tribol. Int.
,
148
, p.
106352
.
48.
Zhirong
,
T.
,
Xiangkai
,
M.
,
Yi
,
M.
, and
Xudong
,
P.
,
2021
, “
Shape Optimization of Hydrodynamic Textured Surfaces for Enhancing Load-Carrying Capacity Based on Level Set Method
,”
Tribol. Int.
,
162
, p.
107136
.
49.
Meng
,
X.
,
Tu
,
Z.
,
Ma
,
Y.
,
Jiang
,
J.
, and
Peng
,
X.
,
2022
, “
Topology Optimization of Liquid Lubricating Zero-Leakage Mechanical Face Seals
,”
Tribol. Int.
,
169
, p.
107490
.
50.
Zhu
,
B.
,
Zhang
,
W.
,
Zhang
,
W.
, and
Li
,
H.
,
2023
, “
Generative Design of Texture for Sliding Surface Based on Machine Learning
,”
Tribol. Int.
,
179
, p.
108139
.
51.
Sanchez-Palencia
,
E.
,
1980
,
Non-Homogeneous Media and Vibration Theory
,
Springer-Verlag
,
Berlin/Heidelberg, New York
.
52.
Pavliotis
,
G.
, and
Stuart
,
A.
,
2008
,
Multiscale Methods: Averaging and Homogenization
,
Springer Science & Business Media
,
New York
.
53.
Torquato
,
S.
,
2002
,
Random Heterogeneous Materials: Microstructure and Macroscopic Properties
,
Springer Science & Business Media
,
New York
.
54.
Patir
,
N.
, and
Cheng
,
H. S.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Lubr. Technol.
,
100
(
1
), pp.
12
17
.
55.
Patir
,
N.
, and
Cheng
,
H. S.
,
1979
, “
Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces
,”
ASME J. Tribol.
,
101
(
2
), pp.
220
230
.
56.
Sun
,
D.-C.
,
1978
, “
On the Effects of Two-Dimensional Reynolds Roughness in Hydrodynamic Lubrication
,”
Proc. R. Soc. Lond. Ser. A Math. Phys. Sci.
,
364
(
1716
), pp.
89
106
.
57.
Elrod
,
H. G.
,
1979
, “
A General Theory for Laminar Lubrication With Reynolds Roughness
,”
ASME J. Lubr. Technol.
,
101
(
1
), pp.
8
14
.
58.
Tripp
,
J. H.
,
1983
, “
Surface Roughness Effects in Hydrodynamic Lubrication: The Flow Factor Method
,”
ASME J. Lubr. Technol.
,
105
(
3
), pp.
458
463
.
59.
Bayada
,
G.
, and
Chambat
,
M.
,
1988
, “
New Models in the Theory of the Hydrodynamic Lubrication of Rough Surfaces
,”
ASME J. Tribol.
,
110
(
3
), pp.
402
407
.
60.
Bayada
,
G.
,
Ciuperca
,
I.
, and
Jai
,
M.
,
2006
, “
Homogenized Elliptic Equations and Variational Inequalities With Oscillating Parameters. Application to the Study of Thin Flow Behavior With Rough Surfaces
,”
Nonlinear Anal.: Real World Appl.
,
7
(
5
), pp.
950
966
.
61.
Almqvist
,
A.
,
2006
, “
On the Effects of Surface Roughness in Lubrication
,” Ph.D. thesis, Luleå Tekniska Universitet, Luleå, Sweden.
62.
Rom
,
M.
,
König
,
F.
,
Müller
,
S.
, and
Jacobs
,
G.
,
2021
, “
Why Homogenization Should Be the Averaging Method of Choice in Hydrodynamic Lubrication
,”
Appl. Eng. Sci.
,
7
, p.
100055
.
63.
Yıldıran
,
İ. N.
,
Temizer
,
İ.
, and
Çetin
,
B.
,
2018
, “
Homogenization in Hydrodynamic Lubrication: Microscopic Regimes and Re-entrant Textures
,”
ASME J. Tribol.
,
140
(
1
), p.
011701
.
64.
Sahlin
,
F.
,
Larsson
,
R.
,
Almqvist
,
A.
,
Lugt
,
P. M.
, and
Marklund
,
P.
,
2009
, “
A Mixed Lubrication Model Incorporating Measured Surface Topography. Part 1: Theory of Flow Factors
,”
Proc. Inst. Mech. Eng. Part J: Eng. Tribol.
,
224
(
4
), pp.
335
351
.
65.
Benhaboucha
,
N.
,
Chambat
,
M.
, and
Ciuperca
,
I.
,
2005
, “
Asymptotic Behavior of Pressure and Stresses in a Thin Film Flow With a Rough Boundary
,”
Q. Appl. Math.
,
LXIII
(
2
), pp.
369
400
.
66.
Çakal
,
B. A.
,
Temizer
,
İ.
,
Terada
,
K.
, and
Kato
,
J.
,
2019
, “
Microscopic Design and Optimization of Hydrodynamically Lubricated Dissipative Interfaces
,”
Int. J. Numer. Methods Eng.
,
120
(
2
), pp.
153
178
.
67.
Waseem
,
A.
,
Temizer
,
İ.
,
Kato
,
J.
, and
Terada
,
K.
,
2016
, “
Homogenization-Based Design of Surface Textures in Hydrodynamic Lubrication
,”
Int. J. Numer. Methods Eng.
,
108
(
12
), pp.
1427
1450
.
68.
Waseem
,
A.
,
Temizer
,
İ.
,
Kato
,
J.
, and
Terada
,
K.
,
2017
, “
Micro-texture Design and Optimization in Hydrodynamic Lubrication Via Two-Scale Analysis
,”
Struct. Multidiscipl. Optim.
,
56
, pp.
227
248
.
69.
Temizer
,
İ.
, and
Stupkiewicz
,
S.
,
2016
, “
Formulation of the Reynolds Equation on a Time-Dependent Lubrication Surface
,”
Proc. R. Soc. A
,
472
(
2187
), p.
20160032
.
70.
Bayada
,
G.
, and
Chambat
,
M.
,
1989
, “
Homogenization of the Stokes System in a Thin Film Flow With Rapidly Varying Thickness
,”
ESAIM: Math. Model. Numer. Anal.
,
23
(
2
), pp.
205
234
.
71.
Fabricius
,
J.
,
Tsandzana
,
A.
,
Perez-Rafols
,
F.
, and
Wall
,
P.
,
2017
, “
A Comparison of the Roughness Regimes in Hydrodynamic Lubrication
,”
ASME J. Tribol.
,
139
(
5
), p.
051702
.
72.
Prat
,
M.
,
Plouraboué
,
F.
, and
Letalleur
,
N.
,
2002
, “
Averaged Reynolds Equation for Flows Between Rough Surfaces in Sliding Motion
,”
Trans. Porous Media
,
48
, pp.
291
313
.
73.
Barbarosie
,
C.
, and
Toader
,
A.-M.
,
2014
, “
Optimization of Bodies With Locally Periodic Microstructure by Varying the Periodicity Pattern
,”
Netw. Heterogeneous Media
,
9
(
3
), pp.
433
451
.
74.
Keleş
,
A. F.
,
Temizer
,
İ.
, and
Cakmakci
,
M.
,
2024
, “
Homogenization-Based Space–Time Topology Optimization of Tunable Microstructures
,”
Int. J. Multiscale Comput. Eng.
,
22
(
1
), pp.
15
34
.
75.
Träff
,
E.
,
Sigmund
,
O.
, and
Goren
,
J.
,
2019
, “
Simple Single-Scale Microstructures Based on Optimal Rank-3 Laminates
,”
Struct. Multidiscipl. Optim.
,
59
, pp.
1021
1031
.
76.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
77.
Pekol
,
S.
,
2023
, “Active Lubrication Interfaces With Tunable Micro-textures,” Master’s thesis, Bilkent University, Ankara, Turkey.
78.
Sigmund
,
O.
, and
Petersson
,
J.
,
1998
, “
Numerical Instabilities in Topology Optimization: A Survey on Procedures Dealing With Checkerboards, Mesh-Dependencies Local Minima
,”
Struct. Multidiscipl. Optim.
,
16
, pp.
68
75
.
79.
Sigmund
,
O.
,
2007
, “
Morphology-Based Black and White Filters for Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
33
, pp.
401
424
.
80.
Svanberg
,
K.
, and
Svärd
,
H.
,
2013
, “
Density Filters for Topology Optimization Based on the Pythagorean Means
,”
Struct. Multidiscipl. Optim.
,
48
, pp.
859
875
.
81.
Özcan
,
M.
,
Cakmakci
,
M.
, and
Temizer
,
I.
,
2020
, “
Smart Composites With Tunable Stress–Strain Curves
,”
Comput. Mech.
,
65
, pp.
375
394
.
82.
Kabacaoğlu
,
G.
, and
Temizer
,
İ.
,
2015
, “
Homogenization of Soft Interfaces in Time-Dependent Hydrodynamic Lubrication
,”
Comput. Mech.
,
56
, pp.
421
441
.
83.
Dorfmann
,
L.
, and
Ogden
,
R. W.
,
2014
,
Nonlinear Theory of Electroelastic and Magnetoelastic Interactions
,
Springer
,
New York
.
84.
Griffiths
,
D. J.
,
2005
,
Introduction to Electrodynamics
,
Pearson
,
San Francisco, CA
.
You do not currently have access to this content.