Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

In situ formation of MoS2 from oil-soluble sulfur-containing organic molybdenum (SOM) additives in lubricating oils is an alternative route of adding MoS2 into oils directly, which is difficult to disperse homogeneously. In this advanced technology, the structures of SOM and the formation of MoS2 during friction determine the efficiencies of SOM additives on the tribological properties of oils. Given the fact that SOM additives have been used intensively in both laboratory researches and industrial applications, this review discusses their molecular structures, tribological behaviors, compatibility with the other additives, and some bottlenecks in practical applications. Moreover, some routes for overcoming the bottlenecks are suggested. This review also concludes the basic lubrication mechanisms of SOM additives and provides some suggestions for utilizing SOM in advanced lubrication systems. Finally, the future development of SOM as oil additives is proposed and summarized.

References

1.
Gao
,
K.
,
Wang
,
Y.
,
Zhang
,
B.
, and
Zhang
,
J.
,
2022
, “
Effect of Vacuum Atomic Oxygen Irradiation on the Tribological Properties of Fullerene-Like Carbon and MoS2 Films
,”
Tribol. Int.
,
170
, p.
107499
.
2.
Xu
,
J.
,
Dai
,
J.
,
Ren
,
F.
,
Wang
,
Y.
,
Wang
,
P.
,
Xu
,
S.
,
Wu
,
S.
, et al
,
2021
, “
Ultrahigh Radiation Resistance of Nanocrystalline Diamond Films for Solid Lubrication in Harsh Radiative Environments
,”
Carbon
,
182
, pp.
525
536
.
3.
Song
,
J.
,
Shi
,
L.
,
Ding
,
H.
,
Galas
,
R.
,
Omasta
,
M.
,
Wang
,
W.
,
Guo
,
J.
,
Liu
,
Q.
, and
Hartl
,
M.
,
2022
, “
Effects of Solid Friction Modifier on Friction and Rolling Contact Fatigue Damage of Wheel-Rail Surfaces
,”
Friction
,
10
(
4
), pp.
597
607
.
4.
Kalin
,
M.
,
Kogovšek
,
J.
, and
Remškar
,
M.
,
2012
, “
Mechanisms and Improvements in the Friction and Wear Behavior Using MoS2 Nanotubes as Potential Oil Additives
,”
Wear
,
280–281
, pp.
36
45
.
5.
Sgroi
,
M. F.
,
Asti
,
M.
,
Gili
,
F.
,
Deorsola
,
F. A.
,
Bensaid
,
S.
,
Fino
,
D.
,
Kraft
,
G.
,
Garcia
,
I.
, and
Dassenoy
,
F.
,
2017
, “
Engine Bench and Road Testing of an Engine Oil Containing MoS2 Particles as Nano-Additive for Friction Reduction
,”
Tribol. Int.
,
105
, pp.
317
325
.
6.
Fan
,
X.
,
Li
,
X.
,
Zhao
,
Z.
,
Yue
,
Z.
,
Feng
,
P.
,
Ma
,
X.
,
Li
,
H.
,
Ye
,
X.
, and
Zhu
,
M.
,
2022
, “
Heterostructured rGO/MoS2 Nanocomposites Toward Enhancing Lubrication Function of Industrial Gear Oils
,”
Carbon
,
191
, pp.
84
97
.
7.
Yi
,
M.
,
Qiu
,
J.
, and
Xu
,
W.
,
2022
, “
Tribological Performance of Ultrathin MoS2 Nanosheets in Formulated Engine Oil and Possible Friction Mechanism at Elevated Temperatures
,”
Tribol. Int.
,
167
, p.
107426
.
8.
Hu
,
C.
,
Yi
,
C.
,
Bai
,
M.
,
Lv
,
J.
, and
Tang
,
D.
,
2020
, “
Molecular Dynamics Study of the Frictional Properties of Multilayer MoS2
,”
RSC Adv.
,
10
(
30
), pp.
17418
17426
.
9.
Onodera
,
T.
,
Morita
,
Y.
,
Suzuki
,
A.
,
Koyama
,
M.
,
Tsuboi
,
H.
,
Hatakeyama
,
N.
,
Endou
,
A.
, et al
,
2009
, “
A Computational Chemistry Study on Friction of h-MoS2. Part I. Mechanism of Single Sheet Lubrication
,”
J. Phys. Chem. B
,
113
(
52
), pp.
16526
16536
.
10.
Onodera
,
T.
,
Morita
,
Y.
,
Nagumo
,
R.
,
Miura
,
R.
,
Suzuki
,
A.
,
Tsuboi
,
H.
,
Hatakeyama
,
N.
, et al
,
2010
, “
A Computational Chemistry Study on Friction of h-MoS2. Part II. Friction Anisotropy
,”
J. Phys. Chem. B
,
114
(
48
), pp.
15832
15838
.
11.
Tomala
,
A.
,
Ripoll
,
M. R.
,
Gabler
,
C.
,
Remškar
,
M.
, and
Kalin
,
M.
,
2017
, “
Interactions Between MoS2 Nanotubes and Conventional Additives in Model Oils
,”
Tribol. Int.
,
110
, pp.
140
150
.
12.
Xu
,
W.
,
Fu
,
C.
,
Hu
,
Y.
,
Chen
,
J.
,
Yang
,
Y.
, and
Yi
,
M.
,
2021
, “
Synthesis of Hollow Core-Shell MoS2 Nanoparticles With Enhanced Lubrication Performance as Oil Additives
,”
Bull. Mater. Sci.
,
44
(
2
), p.
88
.
13.
Wang
,
S.
,
Chen
,
D.
,
Chen
,
Y.
, and
Zhu
,
K.
,
2020
, “
Dispersion Stability and Tribological Properties of Additives Introduced by Ultrasonic and Microwave Assisted Ball Milling in Oil
,”
RSC Adv.
,
10
(
42
), pp.
25177
25185
.
14.
Kumari
,
S.
,
Chouhan
,
A.
,
Siva Kumar Konathala
,
L. N.
,
Sharma
,
O. P.
,
Ray
,
S. S.
,
Ray
,
A.
, and
Khatri
,
O. P.
,
2022
, “
Chemically Functionalized 2D/2D Hexagonal Boron Nitride/Molybdenum Disulfide Heterostructure for Enhancement of Lubrication Properties
,”
Appl. Surf. Sci.
,
579
, p.
152157
.
15.
Koshy
,
C. P.
,
Rajendrakumar
,
P. K.
, and
Thottackkad
,
M. V.
,
2015
, “
Evaluation of the Tribological and Thermo-Physical Properties of Coconut Oil Added With MoS2 Nanoparticles at Elevated Temperatures
,”
Wear
,
330–331
, pp.
288
308
.
16.
Yamamoto
,
Y.
,
Gondo
,
S.
,
Kamakura
,
T.
, and
Tanaka
,
N.
,
1986
, “
Frictional Characteristics of Molybdenum Dithiophosphates
,”
Wear
,
112
(
1
), pp.
79
87
.
17.
Balarini
,
R.
,
Diniz
,
G. A. S.
,
Profito
,
F. J.
, and
Souza
,
R. M.
,
2020
, “
Comparison of Unidirectional and Reciprocating Tribometers in Tests With MoDTC-Containing Oils Under Boundary Lubrication
,”
Tribol. Int.
,
149
, p.
105686
.
18.
Vaitkunaite
,
G.
,
Espejo
,
C.
,
Thiebaut
,
B.
,
Neville
,
A.
, and
Morina
,
A.
,
2022
, “
Low Friction Tribofilm Formation and Distribution on an Engine Cylinder Tested With MoDTC-Containing Low Viscosity Engine Lubricants
,”
Tribol. Int.
,
171
, p.
107551
.
19.
Kiw
,
Y. M.
,
Adam
,
P.
,
Schaeffer
,
P.
,
Thiébaut
,
B.
,
Boyer
,
C.
, and
Obrecht
,
N.
,
2022
, “
Molecular Evidence for Improved Tribological Performances of MoDTC Induced by Methylene-bis(Dithiocarbamates) in Engine Lubricants
,”
RSC Adv.
,
12
(
36
), pp.
23083
23090
.
20.
Bai
,
L.
,
Meng
,
Y.
,
Khan
,
Z. A.
, and
Zhang
,
V.
,
2017
, “
The Synergetic Effects of Surface Texturing and MoDDP Additive Applied to Ball-on-Disk Friction Subject to Both Flooded and Starved Lubrication Conditions
,”
Tribol. Lett.
,
65
(
4
), p.
163
.
21.
De Feo
,
M.
,
Minfray
,
C.
,
De Barros Bouchet
,
M. I.
,
Thiebaut
,
B.
, and
Martin
,
J. M.
,
2015
, “
MoDTC Friction Modifier Additive Degradation: Correlation Between Tribological Performance and Chemical Changes
,”
RSC Adv.
,
5
(
114
), pp.
93786
93796
.
22.
Losi
,
G.
,
Peeters
,
S.
,
Delayens
,
F.
,
Vezin
,
H.
,
Loehlé
,
S.
,
Thiebaut
,
B.
, and
Righi
,
M. C.
,
2021
, “
Experimental and Ab Initio Characterization of Mononuclear Molybdenum Dithiocarbamates in Lubricant Mixtures
,”
Langmuir
,
37
(
16
), pp.
4836
4846
.
23.
Al Kharboutly
,
M.
,
Veryasov
,
G.
,
Gaval
,
P.
,
Verchere
,
A.
,
Camp
,
C.
,
Quadrelli
,
E. A.
,
Galipaud
,
J.
, et al
,
2021
, “
Mo (VI) Dithiocarbamate With No Pre-Existing Mo-S-Mo Core as an Active Lubricant Additive
,”
Tribol. Int.
,
154
, p.
106690
.
24.
Trindade
,
E. D.
,
Zuleta Durango
,
A.
, and
Sinatora
,
A.
,
2015
, “
Friction and Wear Performance of MoDTC-Containing and Ester-Containing Lubricants Over Steel Surfaces Under Reciprocating Conditions
,”
Lubr. Sci.
,
27
(
4
), pp.
217
229
.
25.
Rai
,
Y.
,
Neville
,
A.
, and
Morina
,
A.
,
2016
, “
Transient Processes of MoS2 Tribofilm Formation Under Boundary Lubrication
,”
Lubr. Sci.
,
28
(
7
), pp.
449
471
.
26.
Komaba
,
M.
,
Kondo
,
S.
,
Suzuki
,
A.
,
Kurihara
,
K.
, and
Mori
,
S.
,
2019
, “
Kinetic Study on Lubricity of MoDTC as a Friction Modifier
,”
Tribol. Online
,
14
(
4
), pp.
220
225
.
27.
Deshpande
,
P.
,
Minfray
,
C.
,
Dassenoy
,
F.
,
Le Mogne
,
T.
,
Jose
,
D.
,
Cobian
,
M.
, and
Thiebaut
,
B.
,
2018
, “
Tribocatalytic Behaviour of a TiO2 Atmospheric Plasma Spray (APS) Coating in the Presence of the Friction Modifier MoDTC: A Parametric Study
,”
RSC Adv.
,
8
(
27
), pp.
15056
15068
.
28.
Luan
,
J.
,
Gao
,
J.
,
Cao
,
L.
,
Wan
,
Y.
, and
Li
,
R.
,
2022
, “
Tribological Properties of Micro-Arc Oxidized TC4 Titanium Alloy Under the Action of Oil-Soluble Organic Molybdenum Additives
,”
Tribology
,
42
(
2
), pp.
294
304
.
29.
Yang
,
D.
,
Liu
,
X.
, and
Tian
,
Y.
,
2022
, “
Suppressed MoO3/FeMoO4 Formation in Molybdenum Dialkyl-Dithiocarbamate-Derived Tribofilms on Nitrogen-Incorporated Al-Mg-Ti-B Coatings
,”
Tribol. Int.
,
167
, p.
107374
.
30.
Du
,
S.
,
Yue
,
W.
,
Wang
,
Y.
,
She
,
D.
,
Huang
,
H.
, and
Fu
,
Z.
,
2016
, “
Synergistic Effects Between Sulfurized-Nanocrystallized 316L Steel and MoDTC Lubricating Oil Additive for Improvement of Tribological Performances
,”
Tribol. Int.
,
94
, pp.
530
540
.
31.
Wang
,
Y.
,
Yue
,
W.
,
She
,
D.
,
Fu
,
Z.
,
Huang
,
H.
, and
Liu
,
J.
,
2014
, “
Effects of Surface Nanocrystallization on Tribological Properties of 316L Stainless Steel Under MoDTC/ZDDP Lubrications
,”
Tribol. Int.
,
79
, pp.
42
51
.
32.
Ruan
,
H.
,
Zhang
,
Y.
,
Song
,
F.
,
Wang
,
Q.
,
Wang
,
C.
, and
Wang
,
T.
,
2023
, “
Efficacy of Hierarchical Pore Structure in Enhancing the Tribological and Recyclable Smart Lubrication Performance of Porous Polyimide
,”
Friction
,
11
(
6
), pp.
1014
1026
.
33.
Baumann
,
R.
,
Bouraoui
,
Y.
,
Teicher
,
U.
,
Selbmann
,
E.
,
Ihlenfeldt
,
S.
, and
Lasagni
,
A. F.
,
2023
, “
Tailored Laser Structuring of Tungsten Carbide Cutting Tools for Improving Their Tribological Performance in Turning Aluminum Alloy Al6061 T6
,”
Materials
,
16
(
3
), p.
1205
.
34.
Wang
,
J.
,
Ren
,
S.
,
Li
,
Z.
,
Wang
,
C.
,
Huang
,
X.
,
Fu
,
C.
,
Zheng
,
L.
, and
Ren
,
T.
,
2021
, “
Tribological Behavior of a Novel Organic Molybdenum Containing Mercaptotriazine as a Multifunctional Environmentally Friendly Additive
,”
Tribol. Int.
,
159
, p.
106988
.
35.
Wang
,
J.
,
Huang
,
X.
,
Li
,
Z.
,
Fu
,
C.
,
Wang
,
C.
,
Zheng
,
L.
, and
Ren
,
T.
,
2021
, “
Tribological Behavior of a Novel Organic Molybdenum Containing Dimercaptothiadiazole as a Multifunctional Additive in Biodegradable Base Oil
,”
Mater. Des
,
206
, p.
109823
.
36.
Huai
,
W.
,
Chen
,
X.
,
Lu
,
F.
,
Zhang
,
C.
,
Ma
,
L.
, and
Wen
,
S.
,
2020
, “
Tribological Properties of Sulfur- and Phosphorus-Free Organic Molybdenum Compound as Additive in Oil
,”
Tribol. Int.
,
141
, p.
105944
.
37.
De Barros Bouchet
,
M. I.
,
Martin
,
J. M.
,
Oumahi
,
C.
,
Gorbatchev
,
O.
,
Afanasiev
,
P.
,
Geantet
,
C.
,
Iovine
,
R.
,
Thiebaut
,
B.
, and
Heau
,
C.
,
2018
, “
Booster Effect of Fatty Amine on Friction Reduction Performance of Mo-Based Additives
,”
Tribol. Int.
,
119
, pp.
600
607
.
38.
Morina
,
A.
,
Neville
,
A.
,
Priest
,
M.
, and
Green
,
J. H.
,
2006
, “
ZDDP and MoDTC Interactions in Boundary Lubrication—The Effect of Temperature and ZDDP/MoDTC Ratio
,”
Tribol. Int.
,
39
(
12
), pp.
1545
1557
.
39.
Kiw
,
Y. M.
,
Schaeffer
,
P.
,
Adam
,
P.
,
Thiébaut
,
B.
, and
Boyer
,
C.
,
2022
, “
Dithiocarbamate Transfer Reaction From Methylene-bis(Dithiocarbamates) to Molybdenum Dithiocarbamates in Engine Lubricants Investigated Using Laboratory Experiments
,”
New J. Chem.
,
46
(
46
), pp.
22341
22352
.
40.
Ratoi
,
M.
,
Niste
,
V. B.
,
Alghawel
,
H.
,
Suen
,
Y. F.
, and
Nelson
,
K.
,
2014
, “
The Impact of Organic Friction Modifiers on Engine Oil Tribofilms
,”
RSC Adv.
,
4
(
9
), pp.
4278
4285
.
41.
Wu
,
N.
,
Hu
,
N.
,
Wu
,
J.
, and
Zhou
,
G.
,
2020
, “
Tribology Properties of Synthesized Multiscale Lamellar WS2 and Their Synergistic Effect With Anti-Wear Agent ZDDP
,”
Appl. Sci.
,
10
(
1
), p.
115
.
42.
Kiw
,
Y. M.
,
Adam
,
P.
,
Schaeffer
,
P.
,
Thiébaut
,
B.
, and
Boyer
,
C.
,
2022
, “
Molecular Evidence for Sulfurization of Molybdenum Dithiocarbamates (MoDTC) by Zinc Dithiophosphates: A Key Process in Their Synergetic Interactions and the Enhanced Preservation of MoDTC in Formulated Lubricants?
,”
RSC Adv.
,
12
(
6
), pp.
3542
3553
.
43.
Okubo
,
H.
,
Yonehara
,
M.
, and
Sasaki
,
S.
,
2018
, “
In Situ Raman Observations of the Formation of MoDTC-Derived Tribofilms at Steel/Steel Contact Under Boundary Lubrication
,”
Tribol. Trans.
,
61
(
6
), pp.
1040
1047
.
44.
Rowan
,
E. V.
,
Karol
,
T. J.
, and
Farmer
,
H. H.
,
1989
, “
Organic Molybdenum Complexes
,” US Patent 4889647.
45.
Wang
,
B.
,
Qiu
,
F.
,
Barber
,
G. C.
,
Zou
,
Q.
,
Wang
,
J.
,
Guo
,
S.
,
Yuan
,
Y.
, and
Jiang
,
Q.
,
2022
, “
Role of Nano-Sized Materials as Lubricant Additives in Friction and Wear Reduction: A Review
,”
Wear
,
490–491
, p.
204206
.
46.
She
,
D.
,
Gong
,
P.
,
Wang
,
Y.
,
Kang
,
J.
,
Zhu
,
L.
,
Ma
,
G.
,
Zhong
,
L.
,
Huang
,
H.
,
Wang
,
H.
, and
Yue
,
W.
,
2020
, “
Friction-Reduction and Anti-Wear Properties of Polyalphaolefin Oil With Mo-DTC Additive Enhanced by Nano-Carbon Materials
,”
Appl. Nanosci.
,
10
(
9
), pp.
3539
3551
.
47.
Nunn
,
N.
,
Mahbooba
,
Z.
,
Ivanov
,
M. G.
,
Ivanov
,
D. M.
,
Brenner
,
D. W.
, and
Shenderova
,
O.
,
2015
, “
Tribological Properties of Polyalphaolefin Oil Modified With Nanocarbon Additives
,”
Diamond Relat. Mater.
,
54
, pp.
97
102
.
48.
Shenderova
,
O.
,
Vargas
,
A.
,
Turner
,
S.
,
Ivanov
,
D. M.
, and
Ivanov
,
M. G.
,
2014
, “
Nanodiamond-Based Nanolubricants: Investigation of Friction Surfaces
,”
Tribol. Int.
,
57
(
6
), pp.
1051
1057
.
49.
Chang
,
W.
,
Zheng
,
X.
,
Yuan
,
X.
, and
Li
,
C.
,
2023
, “
Study on the Synergistic Tribological Properties of Alkylated Graphene and Organic Molybdenum
,”
Appl. Chem. Ind.
,
52
(
03
), pp.
749
753
.
50.
Jiang
,
Y.
,
Tang
,
W.
, and
Peng
,
Y.
,
2022
, “
Tribological Performance of Nano CaB/MoDDP Compound Lubricant Additive
,”
J. Harbin Inst. Technol.
,
54
(
7
), pp.
111
119
.
51.
Waqas
,
M.
,
Zahid
,
R.
,
Bhutta
,
M. U.
,
Khan
,
Z. A.
, and
Saeed
,
A.
,
2021
, “
A Review of Friction Performance of Lubricants With Nano Additives
,”
Materials (Basel)
,
14
(
21
), p.
6310
.
52.
Zhang
,
Y.
,
Zhang
,
S.
,
Sun
,
D.
,
Yang
,
G.
,
Gao
,
C.
,
Zhou
,
C.
,
Zhang
,
C.
, and
Zhang
,
P.
,
2019
, “
Wide Adaptability of Cu Nano-Additives to the Hardness and Composition of DLC Coatings in DLC/PAO Solid-Liquid Composite Lubricating System
,”
Tribol. Int.
,
138
, pp.
184
195
.
53.
Yang
,
Y.
,
Fan
,
X.
,
Yue
,
Z.
,
Li
,
W.
,
Li
,
H.
, and
Zhu
,
M.
,
2022
, “
Synergistic Lubrication Mechanisms of Molybdenum Disulfide Film Under Graphene-Oil Lubricated Conditions
,”
Appl. Surf. Sci.
,
598
(
Oct. 1
), pp.
1
9
.
54.
Okubo
,
H.
,
Watanabe
,
S.
,
Sasaki
,
S.
,
Tokuta
,
Y.
,
Moriguchi
,
H.
,
Iba
,
D.
, and
Moriwaki
,
I.
,
2021
, “
Tribological Properties of a Mesh-Like Nanostructured Diamond-Like Carbon (DLC) Lubricated With a Fully Formulated Oil at DLC/Steel Contacts Under Boundary Lubrication
,”
Coatings
,
11
(
7
), p.
746
.
55.
Zhu
,
L.
,
Dong
,
J.
, and
Zeng
,
Q.
,
2021
, “
High Temperature Solid/Liquid Lubrication Behaviours of DLC Films
,”
Lubr. Sci.
,
33
(
5
), pp.
229
245
.
56.
Nakagome
,
K.
,
Sato
,
K.
,
Okubo
,
H.
,
Watanabe
,
S.
, and
Sasaki
,
S.
,
2021
, “
Friction and Wear Properties of Hard Coatings on Steel Surfaces Under Lubrication With a Fully Formulated Oil With a Mo Additive
,”
Tribol. Online
,
16
(
1
), pp.
59
69
.
57.
Guo
,
Y.
,
Guo
,
P.
,
Sun
,
L.
,
Li
,
X.
,
Ke
,
P.
,
Li
,
Q.
, and
Wang
,
A.
,
2019
, “
Tribological Properties of Ti-Doped Diamond-Like Carbon Coatings Under Dry Friction and PAO Oil Lubrication
,”
Surf. Interface Anal.
,
51
(
3
), pp.
361
370
.
58.
Shi
,
J.
,
Wang
,
W.
,
Yang
,
J.
,
Cao
,
X.
,
Zhang
,
J.
, and
Wang
,
C.
,
2021
, “
Effect of Rotational Speed on the Interfacial Nano-Structural Evolution and Friction Behavior of Hydrogenated Fullerene-Like Carbon (FLC) Films in Vacuum
,”
Tribol. Int.
,
154
, p.
106746
.
59.
Qi
,
J.
,
Liu
,
H.
,
Luo
,
Y.
,
Zhang
,
D.
, and
Wang
,
Y.
,
2014
, “
Influences of Added Sand-Dust Particles on the Tribological Performance of Graphite-Like Coating Under Solid–Liquid Lubrication
,”
Tribol. Int.
,
71
, pp.
69
81
.
60.
Liu
,
Y.
,
Chen
,
L.
,
Jiang
,
B.
,
Liu
,
Y.
,
Zhang
,
B.
,
Xiao
,
C.
,
Zhang
,
J.
, and
Qian
,
L.
,
2021
, “
Origin of Low Friction in Hydrogenated Diamond-Like Carbon Films Due to Graphene Nanoscroll Formation Depending on Sliding Mode: Unidirection and Reciprocation
,”
Carbon
,
173
, pp.
696
704
.
61.
Peng
,
D.
,
Wang
,
J.
,
Jiang
,
H.
,
Zhao
,
S.
,
Wu
,
Z.
,
Tian
,
K.
,
Ma
,
M.
, and
Zheng
,
Q.
,
2022
, “
100 km Wear-Free Sliding Achieved by Microscale Superlubric Graphite/DLC Heterojunctions Under Ambient Conditions
,”
Natl. Sci. Rev.
,
9
(
1
), p.
nwab109
.
62.
Long
,
Y.
,
Wang
,
Y.
,
Weihnacht
,
V.
,
Makowski
,
S.
,
Kubo
,
M.
,
Martin
,
J. M.
, and
De Barros Bouchet
,
M.-I.
,
2022
, “
Mechanism of Superlubricity of a DLC/Si3N4 Contact in the Presence of Castor Oil and Other Green Lubricants
,”
Friction
,
10
(
10
), pp.
1693
1706
.
63.
Čoga
,
L.
,
Akbari
,
S.
,
Kovač
,
J.
, and
Kalin
,
M.
,
2022
, “
Differences in Nano-Topography and Tribochemistry of ZDDP Tribofilms From Variations in Contact Configuration With Steel and DLC Surfaces
,”
Friction
,
10
(
2
), pp.
296
315
.
64.
Nakatani
,
T.
,
Okamoto
,
K.
,
Nitta
,
Y.
,
Mochizuki
,
A.
,
Hoshi
,
H.
, and
Homma
,
A.
,
2008
, “
Surface Engineering by Plasma Techniques of DLC for Medical Materials and Blood-Compatibility Evaluation
,”
J. Photopolym. Sci. Technol.
,
21
(
2
), pp.
225
230
.
65.
Liu
,
Y.
,
Zhang
,
K.
,
Han
,
J.-H.
,
Hwang
,
Y.-H.
,
Xu
,
S.
, and
Kim
,
D.-E.
,
2022
, “
One-Step Method to Enhance Biotribological Properties and Biocompatibility of DLC Coating by Ion Beam Irradiation
,”
Friction
,
10
(
7
), pp.
1114
1126
.
66.
Li
,
H.
,
Xu
,
T.
,
Wang
,
C.
,
Chen
,
J.
,
Zhou
,
H.
, and
Liu
,
H.
,
2006
, “
Humidity Dependence on the Friction and Wear Behavior of Diamond-Like Carbon Film in Air and Nitrogen Environments
,”
Diamond Relat. Mater.
,
15
(
10
), pp.
1585
1592
.
67.
Zeng
,
Q.
,
Yu
,
F.
, and
Dong
,
G.
,
2013
, “
Superlubricity Behaviors of Si3N4/DLC Films Under PAO Oil With Nano Boron Nitride Additive Lubrication
,”
Surf. Interface Anal.
,
45
(
8
), pp.
1283
1290
.
68.
Espejo
,
C.
,
Thiébaut
,
B.
,
Jarnias
,
F.
,
Wang
,
C.
,
Neville
,
A.
, and
Morina
,
A.
,
2019
, “
MoDTC Tribochemistry in Steel/Steel and Steel/Diamond-Like-Carbon Systems Lubricated With Model Lubricants and Fully Formulated Engine Oils
,”
ASME J. Tribol.
,
141
(
1
), p.
012301
.
69.
Komori
,
K.
, and
Umehara
,
N.
,
2017
, “
Friction and Wear Properties of Tetrahedral Si-Containing Hydrogenated Diamond-Like Carbon Coating Under Lubricated Condition With Engine-Oil Containing ZnDTP and MoDTC
,”
Tribol. Online
,
12
(
3
), pp.
123
134
.
70.
Hashizume
,
N.
,
Murashima
,
M.
,
Umehara
,
N.
,
Tokoroyama
,
T.
, and
Lee
,
W.-Y.
,
2021
, “
In Situ Observation of the Formation of MoDTC-Derived Tribofilm on a Ta-C Coating Using Reflectance Spectroscopy and Its Effects on Friction
,”
Tribol. Int.
,
162
, p.
107128
.
71.
Masuko
,
M.
,
Ono
,
T.
,
Aoki
,
S.
,
Suzuki
,
A.
, and
Ito
,
H.
,
2015
, “
Friction and Wear Characteristics of DLC Coatings With Different Hydrogen Content Lubricated With Several Mo-Containing Compounds and Their Related Compounds
,”
Tribol. Int.
,
82
, pp.
350
357
.
72.
De Feo
,
M.
,
De Barros Bouchet
,
M. I.
,
Minfray
,
C.
,
Esnouf
,
C.
,
Le Mogne
,
T.
,
Meunier
,
F.
,
Yang
,
L.
,
Thiebaut
,
B.
,
Pavan
,
S.
, and
Martin
,
J. M.
,
2017
, “
Formation of Interfacial Molybdenum Carbide for DLC Lubricated by MoDTC: Origin of Wear Mechanism
,”
Wear
,
370–371
, pp.
17
28
.
73.
Yoshida
,
Y.
, and
Kunitsugu
,
S.
,
2018
, “
Friction Wear Characteristics of Diamond-Like Carbon Coatings in Oils Containing Molybdenum Dialkyldithiocarbamate Additive
,”
Wear
,
414–415
, pp.
118
125
.
74.
Kassim
,
K. A. M.
,
Tokoroyama
,
T.
,
Murashima
,
M.
,
Lee
,
W. Y.
,
Umehara
,
N.
, and
Mustafa
,
M. M. B.
,
2021
, “
Wear Acceleration of a-C:H Coatings by Molybdenum-Derived Particles: Mixing and Temperature Effects
,”
Tribol. Int.
,
159
, p.
106944
.
75.
Sugimoto
,
I.
,
Honda
,
F.
, and
Inoue
,
K.
,
2013
, “
Analysis of Wear Behavior and Graphitization of Hydrogenated DLC Under Boundary Lubricant With MoDTC
,”
Wear
,
305
(
1–2
), pp.
124
128
.
76.
Liu
,
K.
,
Kang
,
J.-J.
,
Zhang
,
G.-A.
,
Lu
,
Z.-B.
, and
Yue
,
W.
,
2021
, “
Effect of Temperature and Mating Pair on Tribological Properties of DLC and GLC Coatings Under High Pressure Lubricated by MoDTC and ZDDP
,”
Friction
,
9
(
6
), pp.
1390
1405
.
77.
Ueda
,
M.
,
Kadiric
,
A.
, and
Spikes
,
H.
,
2021
, “
Wear of Hydrogenated DLC in MoDTC-Containing Oils
,”
Wear
,
474–475
, p.
203869
.
78.
Donnet
,
C.
,
Fontaine
,
J.
,
Grill
,
A.
, and
Le Mogne
,
T.
,
2001
, “
The Role of Hydrogen on the Friction Mechanism of Diamond-Like Carbon Films
,”
Tribol. Lett.
,
9
(
3/4
), pp.
137
142
.
79.
Bhowmick
,
S.
,
Banerji
,
A.
,
Khan
,
M. Z. U.
,
Lukitsch
,
M. J.
, and
Alpas
,
A. T.
,
2015
, “
High Temperature Tribological Behavior of Tetrahedral Amorphous Carbon (ta-C) and Fluorinated ta-C Coatings Against Aluminum Alloys
,”
Surf. Coat. Technol.
,
284
, pp.
14
25
.
80.
Kim
,
D.-W.
, and
Kim
,
K.-W.
,
2013
, “
Effects of Sliding Velocity and Normal Load on Friction and Wear Characteristics of Multi-layered Diamond-Like Carbon (DLC) Coating Prepared by Reactive Sputtering
,”
Wear
,
297
(
1–2
), pp.
722
730
.
81.
Zhang
,
S.
,
Zhu
,
L.
,
Wang
,
Y.
,
Kang
,
J.
,
Wang
,
H.
,
Ma
,
G.
,
Huang
,
H.
,
Zhang
,
G. A.
, and
Yue
,
W.
,
2022
, “
Effects of Annealing Treatment on Tribological Behavior of Tungsten-Doped Diamond-Like Carbon Film Under Lubrication (Part 2): Tribological Behavior Under MoDTC Lubrication
,”
Friction
,
10
(
7
), pp.
1061
1077
.
82.
Chen
,
S.
,
Song
,
N.
,
Zhang
,
S.
,
Zhang
,
Y.
,
Yu
,
L.
, and
Zhang
,
P.
,
2023
, “
Synergistic Tribological Effect Between Polyisobutylene Succinimide-Modified Molybdenum Oxide Nanoparticle and Zinc Dialkyldithiophosphate for Reducing Friction and Wear of Diamond-Like Carbon Coating Under Boundary Lubrication
,”
Friction
,
11
(
11
), pp.
2021
2035
.
83.
Wang
,
Y.
,
Wang
,
Y.
,
Kang
,
J.
,
Ma
,
G.
,
Zhu
,
L.
,
Wang
,
H.
,
Fu
,
Z.
,
Huang
,
H.
, and
Yue
,
W.
,
2021
, “
Tribological Properties of Ti-Doped Diamond-Like Carbon Coatings Under Boundary Lubrication With ZDDP
,”
ASME J. Tribol.
,
143
(
9
), p.
091901
.
84.
Zhang
,
S.
,
Yue
,
W.
,
Kang
,
J.
,
Wang
,
Y.
,
Fu
,
Z.
,
Zhu
,
L.
,
She
,
D.
, and
Wang
,
C.
,
2019
, “
Ti Content on the Tribological Properties of W/Ti-Doped Diamond-Like Carbon Film Lubricating With Additives
,”
Wear
,
430–431
, pp.
137
144
.
85.
Kano
,
M.
,
Martin
,
J. M.
,
Yoshida
,
K.
, and
De Barros Bouchet
,
M. I.
,
2014
, “
Super-Low Friction of Ta-C Coating in Presence of Oleic Acid
,”
Friction
,
2
(
2
), pp.
156
163
.
86.
Khun
,
N. W.
, and
Liu
,
E.
,
2014
, “
Effects of Platinum Content on Tribological Properties of Platinum/Nitrogen Doped Diamond-Like Carbon Thin Films Deposited Via Magnetron Sputtering
,”
Friction
,
2
(
1
), pp.
64
72
.
87.
Su
,
Y.
,
Cai
,
L.
,
Huang
,
W.
,
Zhang
,
T.
,
Yu
,
W.
,
Zhang
,
P.
,
Hu
,
R.
, and
Gong
,
X.
,
2022
, “
Improvement the Tribological Properties of Diamond-Like Carbon Film Via Mo Doping in Diesel Condition
,”
Vacuum
,
198
, p.
110920
.
88.
Yang
,
X.
,
Li
,
R.
,
Wang
,
Y.
,
Zhang
,
J.
, and
Yao
,
X.
,
2021
, “
Improvement of Mechanical and Tribological Performances of Carbon Nanostructure Films by Cryogenic Treatment
,”
Tribol. Int.
,
156
, p.
106819
.
89.
Liang
,
J. H.
,
Milne
,
Z.
,
Rouhani
,
M.
,
Lin
,
Y.-P.
,
Bernal
,
R. A.
,
Sato
,
T.
,
Carpick
,
R. W.
, and
Jeng
,
Y. R.
,
2022
, “
Stress-Dependent Adhesion and Sliding-Induced Nanoscale Wear of Diamond-Like Carbon Studied Using In Situ TEM Nanoindentation
,”
Carbon
,
193
, pp.
230
241
.
90.
Ishikawa
,
T.
, and
Choi
,
J.
,
2021
, “
Effect of Water Adsorption on the Frictional Properties of Hydrogenated Amorphous Carbon Films in Various Relative Humidities
,”
Langmuir
,
37
(
3
), pp.
1012
1024
.
91.
Du
,
D. C.
,
Kim
,
S. S.
,
Suh
,
C. M.
,
Chun
,
J. S.
,
Moon
,
W. S.
, and
Kwon
,
W. S.
,
2004
, “
Effect of MoDDP on the Antioxidative Properties of ZnDDP in Mineral Oil
,”
Lubr. Sci.
,
16
(
2
), pp.
183
193
.
92.
Parenago
,
O. P.
,
Kuz’mina
,
G. N.
, and
Zaimovskaya
,
T. A.
,
2017
, “
Sulfur-Containing Molybdenum Compounds as High-Performance Lubricant Additives (Review)
,”
Petrol. Chem.
,
57
(
8
), pp.
631
642
.
93.
Wang
,
Y.
,
Zhang
,
P.
,
Gao
,
X.
, and
Cheng
,
Y.
,
2023
, “
Rheological and Tribological Properties of Polyurea Greases Containing Additives of MoDDP and PB
,”
Tribol. Int.
,
180
, p.
108291
.
94.
Zhang
,
R. J.
,
Li
,
S. H.
,
Jin
,
Y. S.
,
Wang
,
Y. C.
, and
Tung
,
S. C.
,
2001
, “
Effect of MoDTC and MoDTP on Tribological Behavior of Cylinder Liner/Piston Ring
,”
Tribology
,
21
(
3
), pp.
191
195
.
95.
De Barros Bouchet
,
M. I.
,
Martin
,
J. M.
,
Le Mogne
,
T.
,
Bilas
,
P.
,
Vacher
,
B.
, and
Yamada
,
Y.
,
2005
, “
Mechanisms of MoS2 Formation by MoDTC in Presence of ZnDTP: Effect of Oxidative Degradation
,”
Wear
,
258
(
11–12
), pp.
1643
1650
.
96.
Khaemba
,
D. N.
,
Neville
,
A.
, and
Morina
,
A.
,
2016
, “
New Insights on the Decomposition Mechanism of Molybdenum DialkyldiThioCarbamate (MoDTC): A Raman Spectroscopic Study
,”
RSC Adv.
,
6
(
45
), pp.
38637
38646
.
97.
Grossiord
,
C.
,
Varlot
,
K.
,
Martin
,
J. M.
,
Le Mogne
,
T.
,
Esnouf
,
C.
, and
Inoue
,
K.
,
1998
, “
MoS2 Single Sheet Lubrication by Molybdenum Dithiocarbamate
,”
Tribol. Int.
,
31
(
12
), pp.
737
743
.
98.
Peeters
,
S.
,
Losi
,
G.
,
Restuccia
,
P.
, and
Righi
,
M. C.
,
2022
, “
Unraveling the Mechanism to Form MoS2 Lubricant Layers From MoDTC by Ab Initio Simulations
,”
Appl. Surf. Sci.
,
606
, p.
154880
.
99.
Peeters
,
S.
,
Charrin
,
C.
,
Duron
,
I.
,
Loehlé
,
S.
,
Thiebaut
,
B.
, and
Righi
,
M. C.
,
2021
, “
Importance of the Catalytic Effect of the Substrate in the Functionality of Lubricant Additives: The Case of Molybdenum Dithiocarbamates
,”
Mater. Today Chem.
,
21
, p.
100487
.
100.
Wang
,
F.
,
Shang
,
L.
,
Zhang
,
G.
, and
Wang
,
Z.
,
2022
, “
Polyethylene Glycol Derived Carbon Quantum Dots Nanofluids: An Excellent Lubricant for Diamond-Like Carbon Film/Bearing Steel Contact
,”
Friction
,
10
(
9
), pp.
1393
1404
.
101.
Gong
,
K.
,
Wu
,
X.
,
Zhao
,
G.
, and
Wang
,
X.
,
2017
, “
Tribological Properties of Polymeric Aryl Phosphates Grafted Onto Multi-walled Carbon Nanotubes as High-Performances Lubricant Additive
,”
Tribol. Int.
,
116
, pp.
172
179
.
102.
Ge
,
X.
,
Chai
,
Z.
,
Shi
,
Q.
,
Liu
,
Y.
, and
Wang
,
W.
,
2023
, “
Graphene Superlubricity: A Review
,”
Friction
,
11
(
11
), pp.
1953
1973
.
103.
Nyholm
,
N.
, and
Espallargas
,
N.
,
2023
, “
Functionalized Carbon Nanostructures as Lubricant Additives—A Review
,”
Carbon
,
201
, pp.
1200
1228
.
104.
Wang
,
Q.
,
Hou
,
T.
,
Wang
,
W.
,
Zhang
,
G.
,
Gao
,
Y.
, and
Wang
,
K.
,
2020
, “
Tribological Properties of Black Phosphorus Nanosheets as Oil-Based Lubricant Additives for Titanium Alloy-Steel Contacts
,”
R. Soc. Open. Sci.
,
7
(
9
), p.
200530
.
105.
Wang
,
W.
,
Dong
,
S.
,
Gao
,
Y.
,
Zhang
,
G.
, and
Wang
,
K.
,
2021
, “
Tribological Behaviours of Black Phosphorus/MoS2 Composites as Water-Based Lubrication Additives
,”
Lubr. Sci.
,
33
(
7
), pp.
404
416
.
106.
Mittal
,
P.
,
Rai
,
H.
,
Kumari
,
S.
,
Khatri
,
O. P.
, and
Gosvami
,
N. N.
,
2022
, “
Efficient Friction and Wear Reduction of Al-Si Alloy Via Tribofilms Generated From Synergistic Interaction of ZDDP and Chemically Functionalized h-BN Additives
,”
Appl. Surf. Sci.
,
595
, p.
153520
.
107.
Wang
,
J.
,
Zhuang
,
W.
,
Liang
,
W.
,
Yan
,
T.
,
Li
,
T.
,
Zhang
,
L.
, and
Li
,
S.
,
2022
, “
Inorganic Nanomaterial Lubricant Additives for Base Fluids, to Improve Tribological Performance: Recent Developments
,”
Friction
,
10
(
5
), pp.
645
676
.
108.
Kumar
,
S.
, and
Kumar
,
R.
,
2023
, “
Tribological Characteristics of Synthesized Hybrid Nanofluid Composed of CuO and TiO2 Nanoparticle Additives
,”
Wear
,
518–519
, p.
204623
.
You do not currently have access to this content.