Abstract

Crepitus vibrational and acoustic signal analysis of the human facet joints of the lumbar spine has historically been a difficult problem due to the inhomogeneous and varied signal characteristics. Although previous studies have examined tribological characteristics of facet joints, we have found vibrational and acoustic signals to be a satisfactory analog to facet joint tribology and function. Here, we improve upon our previous automated computational method, now enhancing it for the analysis of human crepitus. Compared with this group’s previous studies using a mechanical model, human crepitus is extremely complex. Therefore, we proposed an automated method (AM) of analysis that used a test set (n = 16) and an experimental set of data (n = 48). We had a fair level of interrater agreement (Kw = 0.367, standard error (SE) = 0.054, 95% confidence interval (CI) = 0.260–0.474) between the AM and human observers before adjustments were made in the AM. Following adjustments to the AM, interrater agreement improved to a substantial level (Kw = 0.788, SE = 0.056, 95% CI = 0.0.682–0.895). In the future, we recommend a machine learning study with a larger number of subjects who can better capture the nuances of varying types of human crepitus.

References

1.
Buchbinder
,
R.
,
Underwood
,
M.
,
Hartvigsen
,
J.
, and
Maher
,
C. G.
,
2020
, “
The Lancet Series Call to Action to Reduce low Value Care for Low Back Pain: An Update
,”
Pain
,
161
(
1
), pp.
S57
S64
.
2.
Hartvigsen
,
J.
,
Hancock
,
M. J.
,
Kongsted
,
A.
,
Louw
,
Q.
,
Ferreira
,
M. L.
,
Genevay
,
S.
,
Hoy
,
D.
, et al
,
2018
, “
What Low Back Pain Is and Why We Need to Pay Attention
,”
Lancet
,
391
(
10137
), pp.
2356
2367
.
3.
Muller-Schwefe
,
G.
,
Morlion
,
B.
,
Ahlbeck
,
K.
,
Alon
,
E.
,
Coaccioli
,
S.
,
Coluzzi
,
F.
,
Huygen
,
F.
, et al
,
2017
, “
Treatment for Chronic Low Back Pain: The Focus Should Change to Multimodal Management That Reflects the Underlying Pain Mechanisms
,”
Curr. Med. Res. Opin.
,
33
(
7
), pp.
1199
1210
.
4.
Koes
,
B. W.
,
van Tulder
,
M. W.
, and
Thomas
,
S.
,
2006
, “
Diagnosis and Treatment of Low Back Pain
,”
Br. Med. J.
,
332
(
7555
), pp.
1430
1434
.
5.
Maher
,
C.
,
Underwood
,
M.
, and
Buchbinder
,
R.
,
2017
, “
Non-Specific Low Back Pain
,”
Lancet
,
389
(
10070
), pp.
736
747
.
6.
Chiarotto
,
A.
,
Boers
,
M.
,
Deyo
,
R. A.
,
Buchbinder
,
R.
,
Corbin
,
T. P.
,
Costa
,
L. O. P.
,
Foster
,
N. E.
, et al
,
2018
, “
Core Outcome Measurement Instruments for Clinical Trials in Nonspecific Low Back Pain
,”
Pain
,
159
(
3
), pp.
481
495
.
7.
Chou
,
R.
,
Qaseem
,
A.
,
Snow
,
V.
,
Casey
,
D.
,
Cross
,
J. T.
, Jr.
,
Shekelle
,
P.
, and
Owens
,
D. K.
,
Clinical Efficacy Assessment Subcommittee of the American College of Physicians and the American College of Physicians/American Pain Society Low Back Pain Guidelines Panel*
,
2007
, “
Diagnosis and Treatment of Low Back Pain: A Joint Clinical Practice Guideline From the American College of Physicians and the American Pain Society
,”
Ann. Intern. Med.
,
147
(
7
), pp.
478
491
.
8.
Gilbert
,
F. J.
,
Grant
,
A. M.
,
Gillan
,
M. G.
,
Vale
,
L. D.
,
Campbell
,
M. K.
,
Scott
,
N. W.
,
Knight
,
D. J.
, and
Wardlaw
,
D.
,
2004
, “
Low Back Pain: Influence of Early MR Imaging or CT on Treatment and Outcome–Multicenter Randomized Trial
,”
Radiology
,
231
(
2
), pp.
343
351
.
9.
Jarvik
,
J. G.
, and
Deyo
,
R. A.
,
2002
, “
Diagnostic Evaluation of Low Back Pain With Emphasis on Imaging
,”
Ann. Intern. Med.
,
137
(
7
), pp.
586
597
.
10.
Manchikanti
,
L.
,
Manchukonda
,
R.
,
Pampati
,
V.
,
Damron
,
K. S.
, and
McManus
,
C. D.
,
2007
, “
Prevalence of Facet Joint Pain in Chronic Low Back Pain in Postsurgical Patients by Controlled Comparative Local Anesthetic Blocks
,”
Arch. Phys. Med. Rehabil.
,
88
(
4
), pp.
449
455
.
11.
Beresford
,
Z. M.
,
Kendall
,
R. W.
, and
Willick
,
S. E.
,
2010
, “
Lumbar Facet Syndromes
,”
Curr. Sports Med. Rep.
,
9
(
1
), pp.
50
56
.
12.
Cramer
,
G. D.
,
Henderson
,
C. N.
,
Little
,
J. W.
,
Daley
,
C.
, and
Grieve
,
T. J.
,
2010
, “
Zygapophyseal Joint Adhesions After Induced Hypomobility
,”
J. Manipulative Physiol. Ther.
,
33
(
7
), pp.
508
518
.
13.
Cramer
,
G. D.
,
Budavich
,
M.
,
Bora
,
P.
, and
Ross
,
K.
,
2017
, “
A Feasibility Study to Assess Vibration and Sound From Zygapophyseal Joints During Motion Before and After Spinal Manipulation
,”
J. Manipulative Physiol. Ther.
,
40
(
3
), pp.
187
200
.
14.
Roytman
,
G.
,
Budavich
,
M.
,
Pocius
,
J.
,
Faydenko
,
J.
,
Muligano
,
D.
, and
Cramer
,
G.
,
2022
, “
Vibration and Acoustic Crepitus Sensing Using Piezoelectric Accelerometers
,”
ASME J. Eng. Sci. Med. Diagn. Ther.
,
5
(
4
), p.
041002
.
15.
Bora
,
P.
,
2011
,
Cavitation Studies of Lumbar Zygapophysial Joints Using Vibration Measurements
,
Auburn University
,
Auburn, AL
.
16.
Davis
,
J. M.
,
Moder
,
K. D.
, and
Hunder
,
G. G.
,
2017
, “History and Physical Examination of the Musculoskeletal System,”
Kelley and Firestein's Textbook of Rheumatology
,
G. S.
Firestein
,
R. C.
Budd
,
S. E.
Gabriel
,
I. B.
Mcinnes
, and
J. R.
O'Dell
, eds.,
Elsevier
,
Philadelphia, PA
, pp.
587
604
.
17.
Kawchuk
,
G. N.
,
Fryer
,
J.
,
Jaremko
,
J. L.
,
Zeng
,
H.
,
Rowe
,
L.
, and
Thompson
,
R.
,
2015
, “
Real-Time Visualization of Joint Cavitation
,”
PLoS One
,
10
(
4
), p.
e0119470
.
18.
Unsworth
,
A.
,
1991
, “
Tribology of Human and Artificial Joints
,”
Proc. Inst. Mech. Eng. H: J. Eng. Med.
,
205
(
3
), pp.
163
172
.
19.
Popov
,
V. L.
,
Poliakov
,
A. M.
, and
Pakhaliuk
,
V. I.
,
2021
, “
Synovial Joints Tribology, Regeneration, Regenerative Rehabilitation and Arthroplasty
,”
Lubricants
,
9
(
2
), pp.
15
.
20.
Nordberg
,
R. C.
,
Espinosa
,
M. G.
,
Hu
,
J. C.
, and
Athanasiou
,
K. A.
,
2021
, “
A Tribological Comparison of Facet Joint, Sacroiliac Joint, and Knee Cartilage in the Yucatan Minipig
,”
Cartilage
,
13
(
S2
), pp.
346S
355S
.
21.
Chhimwal
,
J.
,
Jangid
,
P.
,
Kumar
,
D.
,
Kumar
,
V.
, and
Kumar
,
R.
,
2023
, “
To Study and Develop the Mathematical Models to Review the Properties of Synovial Fluids
,”
Mater. Today: Proc.
.
22.
Woodward
,
P.
,
2017
, “Updated TDMS importer to Matlab 2012.”
23.
McHugh
,
M. L.
,
2012
, “
Interrater Reliability: The Kappa Statistic
,”
Biochem. Med. (Zagreb)
,
22
(
3
), pp.
276
282
.
24.
Lee
,
W.
,
Lin
,
J.
, and
Bao
,
S.
,
2020
, “
Inter-rater Reliability of an Inertial Measurement Unit Sensor-Based Posture-Matching Method: A Pilot Study
,”
Int. J. Ind. Ergon.
,
80
.
25.
Cooray
,
N.
,
Andreotti
,
F.
,
Lo
,
C.
,
Symmonds
,
M.
,
Hu
,
M. T. M.
, and
De Vos
,
M.
,
2021
, “
Proof of Concept: Screening for REM Sleep Behaviour Disorder With a Minimal Set of Sensors
,”
Clin. Neurophysiol.
,
132
(
4
), pp.
904
913
.
26.
Liang
,
S.
, and
Gu
,
Y.
,
2020
, “
Towards Robust and Accurate Detection of Abnormalities in Musculoskeletal Radiographs With a Multi-Network Model
,”
Sensors (Basel)
,
20
(
11
), p.
3153
.
27.
Vabalas
,
A.
,
Gowen
,
E.
,
Poliakoff
,
E.
, and
Casson
,
A. J.
,
2019
, “
Machine Learning Algorithm Validation With a Limited Sample Size
,”
PLoS One
,
14
(
11
), p.
e0224365
.
28.
Kernbach
,
J. M.
, and
Staartjes
,
V. E.
,
2022
, “Foundations of Machine Learning-Based Clinical Prediction Modeling: Part II—Generalization and Overfitting,”
Acta Neurochirurgica Supplement
,
134
,
VE
Staartjes
,
L
Regli
, and
C
Serra
, eds.,
Springer
,
Cham
, pp.
15
21
.
29.
Willemink
,
M. J.
,
Koszek
,
W. A.
,
Hardell
,
C.
,
Wu
,
J.
,
Fleischmann
,
D.
,
Harvey
,
H.
,
Folio
,
L. R.
,
Summers
,
R. M.
,
Rubin
,
D. L.
, and
Lungren
,
M. P.
,
2020
, “
Preparing Medical Imaging Data for Machine Learning
,”
Radiology
,
295
(
1
), pp.
4
15
.
30.
Balki
,
I.
,
Amirabadi
,
A.
,
Levman
,
J.
,
Martel
,
A. L.
,
Emersic
,
Z.
,
Meden
,
B.
,
Garcia-Pedrero
,
A.
, et al
,
2019
, “
Sample-Size Determination Methodologies for Machine Learning in Medical Imaging Research: A Systematic Review
,”
Can. Assoc. Radiol. J
,
70
(
4
), pp.
344
353
.
31.
Cho
,
K.
,
Kyewook
,
L.
,
Shin
,
E.
,
Choy
,
G.
, and
Do
,
S.
,
2016
, “How Much Data Is Needed to Train a Medical Image Deep Learning System to Achieve Necessary High Accuracy?,” arXiv.
32.
Gharaibeh
,
M.
,
Alzu'bi
,
D.
,
Abdullah
,
M.
,
Hmeidi
,
I.
,
Rustom Al Nasar
,
M.
,
Abualigah
,
L.
, and
Gandomi
,
A.
,
2022
, “
Radiology Imaging Scans for Early Diagnosis of Kidney Tumors: A Review of Data Analytics-Based Machine Learning and Deep Learning Approaches
,”
Big Data Cogn. Comput.
,
6
(
1
), p.
29
.
33.
Rajpurkar
,
P.
,
Irvin
,
J.
,
Ball
,
R. L.
,
Zhu
,
K.
,
Yang
,
B.
,
Mehta
,
H.
,
Duan
,
T.
, et al
,
2018
, “
Deep Learning for Chest Radiograph Diagnosis: A Retrospective Comparison of the CheXNeXt Algorithm to Practicing Radiologists
,”
PLoS Med.
,
15
(
11
), p.
e1002686
.
34.
Madabhushi
,
A.
, and
Lee
,
G.
,
2016
, “
Image Analysis and Machine Learning in Digital Pathology: Challenges and Opportunities
,”
Med. Image Anal.
,
33
, pp.
170
175
.
35.
Wang
,
S.
, and
Summers
,
R. M.
,
2012
, “
Machine Learning and Radiology
,”
Med. Image Anal.
,
16
(
5
), pp.
933
951
.
36.
Choy
,
G.
,
Khalilzadeh
,
O.
,
Michalski
,
M.
,
Do
,
S.
,
Samir
,
A. E.
,
Pianykh
,
O. S.
,
Geis
,
J. R.
,
Pandharipande
,
P. V.
,
Brink
,
J. A.
, and
Dreyer
,
K. J.
,
2018
, “
Current Applications and Future Impact of Machine Learning in Radiology
,”
Radiology
,
288
(
2
), pp.
318
328
.
37.
Kohli
,
M.
,
Prevedello
,
L. M.
,
Filice
,
R. W.
, and
Geis
,
J. R.
,
2017
, “
Implementing Machine Learning in Radiology Practice and Research
,”
Am. J. Roentgenol.
,
208
(
4
), pp.
754
760
.
38.
Deng
,
C.
,
Ji
,
X.
,
Rainey
,
C.
,
Zhang
,
J.
, and
Lu
,
W.
,
2020
, “
Integrating Machine Learning With Human Knowledge
,”
iScience
,
23
(
11
), p.
101656
.
39.
Ammar
,
N.
, and
Shaban-Nejad
,
A.
,
2020
, “
Explainable Artificial Intelligence Recommendation System by Leveraging the Semantics of Adverse Childhood Experiences: Proof-of-Concept Prototype Development
,”
JMIR Med. Inform.
,
8
(
11
), p.
e18752
.
You do not currently have access to this content.