Abstract

The reasonable electric current and graphite content will slow down the wear failure of friction pair and prolong the service life of slip ring. To study the wear behaviors of copper/graphite composites under different currents, the composites with graphite contents of 30%, 25%, 20%, and 15%, denoted as CG30, CG25, CG20, and CG15, were prepared as the material of slip ring. A series of friction and wear tests were carried out, and wear topography and friction vibration were measured. With the increase of electric current, the wear mechanism of CG30 is adhesive wear, and that of CG25 changes from adhesive wear to combined effect of adhesive wear and arc ablation. The anti-wear effect of CG30 is better than CG25. However, the ability of arc suppression of CG25 is better than that of CG30. Therefore, in order to improve the service life of slip rings, it is recommended to choose the composite CG25.

References

1.
Xu
,
E. Z.
,
Huang
,
J. X.
,
Li
,
Y. C.
,
Zhu
,
Z. F.
,
Cheng
,
M.
,
Li
,
D. T.
,
Zhong
,
H. H.
,
Liu
,
J. W.
, and
Jiang
,
Y.
,
2019
, “
Graphite Cluster/Copper-Based Powder Metallurgy Composite for Pantograph Slider With Well-Behaved Mechanical and Wear Performance
,”
Powder Technol.
,
344
, pp.
551
560
.
2.
Vidyuk
,
T. M.
,
Dudina
,
D. V.
,
Esikov
,
M. A.
,
Mali
,
V. I.
,
Anisimov
,
A. G.
,
Bokhonov
,
B. B.
, and
Batraev
,
I. S.
,
2020
, “
Pulsed Current-Assisted Joining of Copper to Graphite Using Ti-Cu Brazing Layers
,”
Mater. Today
,
25
(
3
), pp.
377
380
.
3.
Hasan
,
M. S.
,
Kordijazi
,
A.
,
Rohatgi
,
P. K.
, and
Nosonovsky
,
M.
,
2022
, “
Machine Learning Models of the Transition From Solid to Liquid Lubricated Friction and Wear in Aluminum-Graphite Composites
,”
Tribol. Int.
,
165
, p.
107326
.
4.
Bai
,
L.
,
Ge
,
Y. C.
,
Zhu
,
L. Y.
,
Chen
,
Y. H.
, and
Yi
,
M. Z.
,
2021
, “
Preparation and Properties of Copper-Plated Expanded Graphite Copper Composites
,”
Tribol. Int.
,
161
, p.
107094
.
5.
Zuo
,
H. Z.
,
Wei
,
W. F.
,
Yang
,
Z. F.
,
Li
,
X. B.
,
Ren
,
J. W.
,
Xian
,
Y.
,
Liao
,
Q. H.
,
Yin
,
G. F.
,
Gao
,
G. Q.
, and
Wu
,
G. N.
,
2021
, “
Performance Enhancement of Carbon/Copper Composites Based on Boron Doping
,”
J. Alloys Compd.
,
876
, p.
160213
.
6.
Liu
,
R. T.
,
Cheng
,
K.
,
Chen
,
J.
,
Xiong
,
X.
, and
Lin
,
X. Y.
,
2020
, “
Friction and Wear Properties of High Temperature and Low Temperature Sintered Copper-Graphite Brushes at Different Ambient Temperatures
,”
J. Mater. Res. Technol.
,
4
(
9
), pp.
7288
7296
.
7.
Yin
,
J.
,
Zhang
,
H. B.
,
Xiong
,
X.
,
Tao
,
H. J.
,
Wang
,
P.
, and
Deng
,
C. Y.
,
2017
, “
Influence of Applied Load on Wear Behavior of C/C-Cu Composites Under Electric Current
,”
Prog. Nat. Sci.
,
27
(
2
), pp.
192
196
.
8.
Deng
,
C. Y.
,
Yin
,
J.
,
Zhang
,
H. B.
,
Xiong
,
X.
,
Wang
,
P.
, and
Sun
,
M.
,
2017
, “
The Tribological Properties of Cf/Cu/C Composites Under Applied Electric Current
,”
Tribol. Int.
,
116
, pp.
84
94
.
9.
Yasar
,
I.
,
Canakci
,
A.
, and
Arslan
,
F.
,
2007
, “
The Effect of Brush Spring Pressure on the Wear Behaviour of Copper-Graphite Brushes With Electrical Current
,”
Tribol. Int.
,
9
(
40
), pp.
1381
1386
.
10.
Ma
,
W. L.
, and
Lu
,
J. J.
,
2011
, “
Effect of Sliding Speed on Surface Modification and Tribological Behavior of Copper-Graphite Composite
,”
Tribol. Lett.
,
41
(
2
), pp.
363
370
.
11.
Yang
,
H. J.
,
Wang
,
K.
,
Liu
,
Y. H.
,
Fu
,
L.
,
Cui
,
X. L.
,
Jiang
,
G.
, and
Hu
,
B.
,
2020
, “
The Formation of the Delamination Wear of the Pure Carbon Strip and Its Influence on the Friction and Wear Properties of the Pantograph and Catenary System
,”
Wear
,
454–455
, p.
203343
.
12.
Lin
,
X. Z.
,
Zhu
,
M. H.
,
Mo
,
J. L.
,
Chen
,
G. X.
,
Jin
,
X. S.
, and
Zhou
,
Z. R.
,
2011
, “
Tribological and Electric-Arc Behaviors of Carbon/Copper Pair During Sliding Friction Process With Electric Current Applied
,”
Trans. Nonferrous Met. Soc. China
,
21
(
2
), pp.
292
299
.
13.
Wang
,
Y. A.
,
Li
,
J. X.
,
Yan
,
Y.
, and
Qiao
,
L. J.
,
2021
, “
Effect of pv Factor on Sliding Friction and Wear of Copper-Impregnated Metallized Carbon
,”
Wear
,
289
, pp.
119
123
.
14.
Shin
,
W. G.
, and
Lee
,
S. H.
,
2010
, “
An Analysis of the Main Factors on the Wear of Brushes for Automotive Small Brush-Type DC Motor
,”
J. Mech. Sci. Technol.
,
24
(
1
), pp.
37
41
.
15.
Li
,
Y. C.
,
Huang
,
J. X.
,
Wang
,
M.
,
Liu
,
J. W.
,
Wang
,
C. Y.
,
Zhong
,
H. H.
, and
Jiang
,
Y.
,
2021
, “
Microstructure and Current Carrying Wear Behaviors of Copper/Sintered-Carbon Composites for Pantograph Sliders
,”
Met. Mater. Int.
,
27
(
9
), pp.
3398
3408
.
16.
Zhu
,
L. Y.
,
Yi
,
M. Z.
,
Wang
,
L. M.
, and
Chen
,
S. G.
,
2020
, “
Effects of Foam Copper on the Mechanical Properties and Tribological Properties of Graphite/Copper Composites
,”
Tribol. Int.
,
148
, p.
106164
.
17.
Yang
,
Z. H.
,
Ge
,
Y. X.
,
Zhang
,
X.
,
Shangguan
,
B.
,
Zhang
,
Y. Z.
, and
Wang
,
Y.
,
2019
, “
Effect of Particle Size on Current-Carrying Friction and Wear Properties of Copper-Graphite Composites by Spark Plasma Sintering
,”
Materials
,
12
(
17
), p.
2825
.
18.
Liu
,
X. L.
,
Cai
,
Z. B.
,
Xiao
,
Q.
,
Shen
,
M. X.
,
Yang
,
W. B.
, and
Chen
,
D. Y.
,
2020
, “
Fretting Wear Behavior of Brass/Copper-Graphite Composites as a Contactor Material Under Electrical Contact
,”
Int. J. Mech. Sci.
,
184
, p.
105703
.
19.
Cho
,
K. H.
,
Hong
,
U. S.
,
Lee
,
K. S.
, and
Jang
,
H.
,
2007
, “
Tribological Properties and Electrical Signal Transmission of Copper-Graphite Composites
,”
Tribol. Lett.
,
3
(
27
), pp.
301
306
.
20.
Grandin
,
M.
, and
Wiklund
,
U.
,
2017
, “
Wear Phenomena and Tribofilm Formation of Copper/Copper-Graphite Sliding Electrical Contact Materials
,”
Wear
,
398–399
, pp.
227
235
.
21.
Poljanec
,
D.
,
Kalin
,
M.
, and
Kumar
,
L.
,
2018
, “
Influence of Contact Parameters on the Tribological Behaviour of Various Graphite Sliding Electrical Contacts
,”
Wear
,
406–407
, pp.
75
83
.
22.
Kumar
,
J.
, and
Mondal
,
S.
,
2018
, “
Microstructure and Properties of Graphite-Reinforced Copper Matrix Composites
,”
J. Braz. Soc. Mech. Sci. Eng.
,
40
(
4
), p.
196
.
23.
Yin
,
J.
,
Zhang
,
H. B.
,
Tan
,
C.
, and
Xiong
,
X.
,
2014
, “
Effect of Heat Treatment Temperature on Sliding Wear Behavior of C/C-Cu Composites Under Electric Current
,”
Wear
,
312
(
1–2
), pp.
91
95
.
24.
Sarmadi
,
H.
,
Kokabia
,
A. H.
, and
Reihania
,
S. M. S.
,
2013
, “
Friction and Wear Performance of Copper-Graphite Surface Composites Fabricated by Friction Stir Processing (FSP)
,”
Wear
,
304
(
1–2
), pp.
1
12
.
25.
Wang
,
P.
,
Zhang
,
H.
,
Yin
,
J.
,
Xiong
,
X.
,
Tan
,
C.
,
Deng
,
C. Y.
, and
Yan
,
Z. Q.
,
2017
, “
Wear and Friction Behaviors of Copper Mesh and Flaky Graphite-Modified Carbon/Carbon Composite for Sliding Contact Material Under Electric Current
,”
Wear
,
380–381
, pp.
59
65
.
26.
Baldazzi
,
G.
,
Sulas
,
E.
,
Urru
,
M.
,
Tumbarello
,
R.
,
Raffo
,
L.
, and
Pani
,
D.
,
2020
, “
Wavelet Denoising as a Post-Processing Enhancement Method for Non-Invasive Foetal Electrocardiography
,”
Comput. Methods Programs Biomed.
,
195
, p.
105558
.
You do not currently have access to this content.