Abstract

In this study, microstructure and wear properties of A356 aluminum matrix nanocomposites reinforced with nano-Al2O3 particles were investigated. The powder metallurgy method was used for the production of 1 wt% and 2 wt% nano-Al2O3 particle reinforced nanocomposites. After 1 h of mechanical milling of A356 and nano-Al2O3 powders, green compacts were obtained by cold pressing. Green compacts were sintered at 550 °C in a vacuum environment (10−6 mbar) for 1 h. Samples were characterized by density, hardness measurements, scanning electron microscopy investigations, and wear tests. As the reinforcement ratio increased, there was a decrease in the densities of the nanocomposites, as well as an increase in the porosity. The highest hardness and the lowest weight loss values were obtained in 1 wt% Al2O3 reinforced nanocomposites. A decrease in hardness was measured at 2 wt% Al2O3 reinforced nanocomposites.

References

1.
Koli
,
D. K.
,
Agnihotri
,
G.
, and
Purohit
,
R.
,
2015
, “
Advanced Aluminium Matrix Composites: The Critical Need of Automotive and Aerospace Engineering Fields
,”
Mater. Today: Proc.
,
2
(
4–5
), pp.
3032
3041
.
2.
Bahrami
,
A.
,
Soltani
,
N.
, and
Pech-Canul
,
M. I.
,
2015
, “
Effect of Sintering Temperature on Tribological Behavior of Ce-TZP/Al2O3-Aluminum Nanocomposite
,”
J. Compos. Mater.
,
49
(
28
), pp.
3507
3514
.
3.
Soltani
,
N.
,
Soltani
,
S.
,
Bahrami
,
A.
,
Pech-Canul
,
M. I.
,
Gonzalez
,
L. A.
,
Möller
,
A.
,
Tapp
,
J.
, and
Gurlo
,
A.
,
2017
, “
Electrical and Thermomechanical Properties of CVI-Si3N4 Porous Rice Husk Ash Infiltrated by Al–Mg–Si Alloys
,”
J. Alloys Compd.
,
696
, pp.
856
868
.
4.
Bahrami
,
A.
,
Soltani
,
N.
,
Pech-Canul
,
M. I.
,
Soltani
,
S.
,
González
,
L. A.
,
Gutiérrez
,
C. A.
,
Tapp
,
J.
,
Möller
,
A.
, and
Gurlo
,
A.
,
2018
, “
Bilayer Graded Al/B4C/Rice Husk Ash Composite: Wettability Behavior, Thermo-Mechanical, and Electrical Properties
,”
J. Compos. Mater.
,
52
(
27
), pp.
3745
3758
.
5.
Bahrami
,
A.
,
Pech-Canul
,
M. I.
,
Gutierrez
,
C. A.
, and
Soltani
,
N.
,
2015
, “
Effect of Rice-Husk Ash on Properties of Laminated and Functionally Graded Al/SiC Composites by One-Step Pressureless Infiltration
,”
J. Alloys Compd.
,
644
, pp.
256
266
.
6.
Bahrami
,
A.
,
Soltani
,
N.
,
Soltani
,
S.
,
Pech-Canul
,
M. I.
,
Gonzalez
,
L. A.
,
Gutierrez
,
C. A.
,
Möller
,
A.
,
Tapp
,
J.
, and
Gurlo
,
A.
,
2017
, “
Mechanical, Thermal and Electrical Properties of Monolayer and Bilayer Graded Al/SiC/Rice Husk Ash (RHA) Composite
,”
J. Alloys Compd.
,
699
, pp.
308
322
.
7.
Mahboob
,
H.
,
Sajjadi
,
S. A.
, and
Zebarjad
,
S. M.
,
2011
, “
Influence of Nanosized Al2O3 Weight Percentage on Microstructure and Mechanical Properties of Al–Matrix Nanocomposite
,”
Powder Metall.
,
54
(
2
), pp.
148
152
.
8.
Özyürek
,
D.
,
Yıldırım
,
M.
, and
Ciftçi
,
I.
,
2012
, “
The Tribological Properties of A356-SiCp Metal-Matrix Composites Fabricated by Thixomoulding Technique
,”
Sci. Eng. Compos. Mater.
,
19
(
4
), pp.
351
356
.
9.
Erek
,
H. B.
,
Ozyürek
,
D.
, and
Asan
,
A.
,
2017
, “
Corrosion Behaviour and Electrical Conductivity of Reinforced TiAl3 and B4C Hybrid Aluminium Composites
,”
Acta Phys. Pol. A
,
131
(
1
), pp.
156
158
.
10.
Özyürek
,
D.
, and
Ciftci
,
I.
,
2011
, “
An Investigation Into the Wear Behaviour of TiB2 Particle Reinforced Aluminium Composites Produced by Mechanical Alloying
,”
Sci. Eng. Compos. Mater.
,
18
(
1–2
), pp.
5
12
.
11.
Simsek
,
D.
,
Simsek
,
I.
, and
Ozyurek
,
D.
,
2020
, “
Relationship Between Al2O3 Content and Wear Behavior of Al+2% Graphite Matrix Composites
,”
Sci. Eng. Compos. Mater.
,
27
(
1
), pp.
177
185
.
12.
Li
,
G.
,
Peng
,
N.
,
Sun
,
D.
, and
Sun
,
S.
,
2014
, “
Friction and Wear Behavior of Nano-Al2O3 Particles Reinforced Copper Matrix Composites
,”
ASME J. Tribol.
,
137
(
1
), p.
011604
.
13.
Ezatpour
,
H. R.
,
Torabi Parizi
,
M.
,
Sajjadi
,
S. A.
,
Ebrahimi
,
G. R.
, and
Chaichi
,
A.
,
2016
, “
Microstructure, Mechanical Analysis and Optimal Selection of 7075 Aluminum Alloy Based Composite Reinforced With Alumina Nanoparticles
,”
Mater. Chem. Phys.
,
178
, pp.
119
127
.
14.
Casati
,
R.
, and
Vedani
,
M.
,
2014
, “
Metal Matrix Composites Reinforced by Nano-Particles—A Review
,”
Metals
,
4
(
1
), pp.
65
83
.
15.
Kang
,
Y. C.
, and
Chan
,
S. L. I.
,
2004
, “
Tensile Properties of Nanometric Al2O3 Particulate-Reinforced Aluminum Matrix Composites
,”
Mater. Chem. Phys.
,
85
(
2–3
), pp.
438
443
.
16.
Rahimian
,
M.
,
Parvin
,
N.
, and
Ehsani
,
N.
,
2010
, “
Investigation of Particle Size and Amount of Alumina on Microstructure and Mechanical Properties of Al Matrix Composite Made by Powder Metallurgy
,”
Mater. Sci. Eng. A
,
527
(
4–5
), pp.
1031
1038
.
17.
Safari
,
J.
,
Akbari
,
G. H.
, and
Delshad Chermahini
,
M.
,
2013
, “
The Effect of Reinforcement Content and Milling Time on Microstructure and Mechanical Properties of Al-10Mg/xAl2O3 Nanocomposites
,”
Mater. Sci. Eng. A
,
569
, pp.
86
91
.
18.
Manivannan
,
I.
,
Ranganathan
,
S.
,
Gopalakannan
,
S.
,
Suresh
,
S.
, and
Nagakarthigan
,
K.
,
2017
, “
Tribological and Surface Behavior of Silicon Carbide Reinforced Aluminum Matrix Nanocomposite
,”
Surf. Interfaces
,
8
, pp.
127
136
.
19.
Hosseini
,
N.
,
Karimzadeh
,
F.
,
Abbasi
,
M. H.
, and
Enayati
,
M. H.
,
2012
, “
A Comparative Study on the Wear Properties of Coarse-Grained Al6061 Alloy and Nanostructured Al6061—Al2O3 Composites
,”
Tribol. Int.
,
54
, pp.
58
67
.
20.
Tiku
,
V.
,
Navin
,
K.
, and
Kurchania
,
R.
,
2020
, “
Study of Structural and Mechanical Properties of Al/Nano-Al2O3 Metal Matrix Nanocomposite Fabricated by Powder Metallurgy Method
,”
Trans. Indian Inst. Met.
,
73
(
4
), pp.
1007
1013
.
21.
Soltani
,
N.
,
Sadrnezhaad
,
S. K.
, and
Bahrami
,
A.
,
2014
, “
Manufacturing Wear-Resistant 10Ce-TZP/Al2O3 Nanoparticle Aluminum Composite by Powder Metallurgy Processing
,”
Mater. Manuf. Process.
,
29
(
10
), pp.
1237
1244
.
22.
Deaquino-Lara
,
R.
,
Soltani
,
N.
,
Bahrami
,
A.
,
Gutiérrez-Castañeda
,
E.
,
García-Sánchez
,
E.
, and
Hernandez-Rodríguez
,
M. A. L.
,
2015
, “
Tribological Characterization of Al7075-Graphite Composites Fabricated by Mechanical Alloying and Hot Extrusion
,”
Mater. Des.
,
67
, pp.
224
231
.
23.
Yıldırım
,
M.
,
Özyürek
,
D.
, and
Gürü
,
M.
,
2016
, “
Investigation of Microstructure and Wear Behaviors of Al Matrix Composites Reinforced by Carbon Nanotube
,”
Fullerenes, Nanotubes, Carbon Nanostruct.
,
24
(
7
), pp.
467
473
.
24.
International ASTM
,
2017
,
Standard Test Method for Wear Testing With a Pin-on-Disk Apparatus G99-17
.
25.
Çam
,
S.
,
Demir
,
V.
, and
Özyürek
,
D.
,
2016
, “
Wear Behaviour of A356/TiAl3 In Situ Composites Produced by Mechanical Alloying
,”
Metals
,
6
(
2
), p.
34
.
26.
Fogagnolo
,
J. B.
,
Ruiz-Navas
,
E. M.
,
Robert
,
M. H.
, and
Torralba
,
J. M.
,
2003
, “
The Effects of Mechanical Alloying on the Compressibility of Aluminium Matrix Composite Powder
,”
Mater. Sci. Eng. A
,
355
(
1–2
), pp.
50
55
.
27.
Soltani
,
N.
,
Jafari Nodooshan
,
H. R.
,
Bahrami
,
A.
,
Pech-Canul
,
M. I.
,
Liu
,
W.
, and
Wu
,
G.
,
2014
, “
Effect of Hot Extrusion on Wear Properties of Al-15wt% Mg2Si In Situ Metal Matrix Composites
,”
Mater. Des.
,
53
, pp.
774
781
.
28.
Moazami-Goudarzi
,
M.
, and
Akhlaghi
,
F.
,
2016
, “
Wear Behavior of Al 5252 Alloy Reinforced With Micrometric and Nanometric SiC Particles
,”
Tribol. Int.
,
102
, pp.
28
37
.
29.
Edalati
,
K.
,
Ashida
,
M.
,
Horita
,
Z.
,
Matsui
,
T.
, and
Kato
,
H.
,
2014
, “
Wear Resistance and Tribological Features of Pure Aluminum and Al—Al2O3 Composites Consolidated by High-Pressure Torsion
,”
Wear
,
310
(
1–2
), pp.
83
89
.
You do not currently have access to this content.