Abstract

This paper presents a machine learning neural network capable of approximating pressure as the distributive result of elastohydrodynamic (EHD) effects for a journal bearing at steady state. Design of efficient, reliable fluid power pumps and motors requires accurate models of lubricating interfaces; however, many state-of-the-art simulation models are structured around numerical solutions to the Reynolds equation which involve nested iterative loops, leading to long simulation durations and limiting the ability to use such models in optimization studies. This study presents a machine learning model capable of approximating the pressure solution of the Reynolds equation for a journal bearing with given distributive geometric boundary conditions and considering cavitation and elastic deformation at steady-state operating conditions. A 1024-sample training set was generated using an in-house multiphysics simulator. A hyperparameter optimization study was conducted, leading to the six-layer U-Net convolutional neural network architecture proposed. After training, the neural network accurately predicted pressure distributions for test samples with different geometric inputs from the training data, and accurately estimated resultant journal bearing loads, showing the feasibility of post-processing the machine learning output for integration into other fluid power models. Additionally, the neural network showed promise in analyzing geometric inputs outside the space of the training data, approximating the pressure in a grooved journal bearing with reasonable accuracy. These results demonstrate the potential of a machine learning model to be integrated into fluid power pump and motor simulations for faster performance evaluation and optimization.

References

1.
Hess
,
N.
, and
Shang
,
L.
,
2021
, “
Machine Learning Prediction of Journal Bearing Pressure Distributions, Considering Elastic Deformation and Cavitation
,”
ASME/BATH 2021 Symposium on Fluid Power and Motion Control, Virtual, Online
,
Oct. 19–21, 2021
,
ASME Paper No. FPMC2021-68483
.
2.
Chacon
,
R.
, and
Ivantysynova
,
M.
,
2019
, “
Virtual Prototyping of Axial Piston Machines: Numerical Method and Experimental Validation
,”
Energies
,
12
(
9
), p.
1674
.
3.
Zhou
,
J.
,
Li
,
T.
, and
Wang
,
D.
,
2021
, “
A Novel Approach of Studying the Fluid-Structure-Thermal Interaction of the Piston-Cylinder Interface of Axial Piston Pumps
,”
Appl. Sci.
,
11
(
19
), p.
8843
.
4.
Li
,
Y.
,
Chen
,
X.
,
Luo
,
H.
, and
Zhang
,
J.
,
2021
, “
An Empirical Model for the Churning Losses Prediction of Fluid Flow Analysis in Axial Piston Pumps
,”
Micromachines
,
12
(
4
), p.
398
.
5.
Jing
,
C.
,
Zhou
,
J.
, and
Zhou
,
J.
,
2019
, “
Experimental Study of Churning Losses in Swash Plate Axial Piston Pump
,”
J. Beijing Inst. Technol.
,
28
(
3
), pp.
529
535
.
6.
Xiang-zhou
,
W.
,
Ye
,
L.
, and
Shu-hua
,
Z.
,
2015
, “
Novel Method for Operating Characteristics Test of a Hydraulic Pump
,”
J. Beijing Inst. Technol.
,
24
(
1
), pp.
74
82
.
7.
Shi
,
Z.
,
Parker
,
G.
, and
Granstrom
,
J.
,
2009
, “
Kinematic Analysis of a Swash-Plate Controlled Variable Displacement Axial-Piston Pump With a Conical Barrel Assembly
,”
ASME J. Dyn. Syst. Meas. Control
,
132
(
1
), p.
011002
.
8.
Fornarelli
,
F.
,
Lippolis
,
A.
,
Oresta
,
P.
, and
Posa
,
A.
,
2017
, “
A Computational Model of Axial Piston Swashplate Pumps
,”
Energy Procedia
,
126
, pp.
1147
1154
.
9.
Kumar
,
S.
,
Bergada
,
J.
, and
Watton
,
J.
,
2009
, “
Axial Piston Pump Grooved Slipper Analysis by CFD Simulation of Three-Dimensional NVS Equation in Cylindrical Coordinates
,”
Comput. Fluids
,
38
(
3
), pp.
648
663
.
10.
Hajishafiee
,
A.
,
Kadiric
,
A.
,
Ioannides
,
S.
, and
Dini
,
D.
,
2017
, “
A Coupled Finite-Volume CFD Solver for two-Dimensional Elasto-Hydrodynamic Lubrication Problems With Particular Application to Rolling Element Bearings
,”
Tribol. Int.
,
109
, pp.
258
273
.
11.
Zhang
,
B.
,
Ma
,
J.
,
Hong
,
H.
,
Yang
,
H.
, and
Fang
,
Y.
,
2017
, “
Analysis of the Flow Dynamics Characteristics of an Axial Piston Pump Based on the Computational Fluid Dynamics Method
,”
Eng. Appl. Comput. Fluid Mech.
,
11
(
1
), pp.
86
95
.
12.
Xu
,
B.
,
Hu
,
M.
, and
Zhang
,
J.
,
2015
, “
Impact of Typical Steady-State Conditions and Transient Conditions on Flow Ripple and Its Test Accuracy for Axial Piston Pump
,”
Chin. J. Mech. Eng.
,
28
(
5
), pp.
1012
1022
.
13.
Pelosi
,
M.
, and
Ivantysynova
,
M.
,
2012
, “
A Geometric Multigrid Solver for the Piston-Cylinder Interface of Axial Piston Machines
,”
Tribol. Trans.
,
55
(
2
), pp.
163
174
.
14.
Xu
,
B.
,
Zhang
,
J.
,
Yang
,
H.
, and
Zhang
,
B.
,
2013
, “
Investigation on the Radial Micro-Motion About Piston of Axial Piston Pump
,”
Chin. J. Mech. Eng.
,
26
(
2
), pp.
325
333
.
15.
Ransegnola
,
T.
,
2020
, “
A Strongly Coupled Simulation Model of Positive Displacement Machines for Design and Optimization
,”
Ph.D. dissertation
,
Purdue University
,
West Lafayette, IN
.
16.
Schenk
,
A.
, and
Ivantysynova
,
M.
,
2015
, “
A Transient Thermoelastohydrodynamic Lubrication Model for the Slipper/Swashplate in Axial Piston Machines
,”
ASME J. Tribol.
,
137
(
3
), p.
031701
.
17.
Ransegnola
,
T.
,
Sadeghi
,
F.
, and
Vacca
,
A.
,
2021
, “
An Efficient Cavitation Model for Compressible Fluid Film Bearings
,”
Tribol. Trans.
,
64
(
3
), pp.
434
453
.
18.
Shang
,
L.
, and
Ivantysynova
,
M.
,
2018
, “
Advanced Heat Transfer Model for Piston/Cylinder Interface
,”
Proceedings of the 11th International Fluid Power Conference
, Aachen, Germany, Mar. 19–21, pp.
586
595
.
19.
Benra
,
F.
,
Dohmen
,
H.
,
Pei
,
J.
,
Schuster
,
S.
, and
Wan
,
B.
,
2011
, “
A Comparison of One-Way and Two-Way Coupling Methods for Numerical Analysis of Fluid-Structure Interactions
,”
J. Appl. Math.
,
2011
, pp.
1
16
.
20.
LeCun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
.
21.
Hu
,
L.
,
Zhang
,
J.
,
Xiang
,
Y.
, and
Wang
,
W.
,
2020
, “
Neural Networks-Based Aerodynamic Data Modeling: A Comprehensive Review
,”
IEEE Access
,
8
, pp.
90805
90823
.
22.
Liang
,
L.
,
Liu
,
M.
,
Martin
,
C.
, and
Sun
,
W.
,
2018
, “
A Deep Learning Approach to Estimate Stress Distribution: A Fast and Accurate Surrogate of Finite-Element Analysis
,”
J. R Soc. Interface
,
15
(
138
), p.
20170844
.
23.
Balu
,
A.
,
Nallagonda
,
S.
,
Xu
,
F.
,
Krishnamurthy
,
A.
,
Hsu
,
M.
, and
Sarkar
,
S.
,
2019
, “
A Deep Learning Framework for Design and Analysis of Surgical Bioprosthetic Heart Valves
,”
Sci. Rep.
,
9
, p.
18560
.
24.
Ye
,
S.
,
Zhang
,
Z.
,
Song
,
X.
,
Wang
,
Y.
,
Chen
,
Y.
, and
Huang
,
C.
,
2020
, “
A Flow Feature Detection Method for Modeling Pressure Distribution Around a Cylinder in Non-Uniform Flows by Using a Convolutional Neural Network
,”
Sci. Rep.
,
10
, p.
4459
.
25.
Wu
,
H.
,
Liu
,
X.
,
An
,
W.
,
Chen
,
S.
, and
Lyu
,
H.
,
2020
, “
A Deep Learning Approach for Efficiently and Accurately Evaluating the Flow Field of Supercritical Airfoils
,”
Comput. Fluids
,
198
, p.
104393
.
26.
Hornik
,
K.
,
Stinchcombe
,
M.
, and
White
,
H.
,
1989
, “
Multilayer Feedforward Networks Are Universal Approximators
,”
Neural Netw.
,
2
(
5
), pp.
359
366
.
27.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.
28.
Ozbay
,
A.
,
Hamzehloo
,
A.
,
Laizet
,
S.
,
Tzirakis
,
P.
,
Rizos
,
G.
, and
Schuller
,
B.
,
2021
, “
Poisson CNN: Convolutional Neural Networks for the Solution of the Poisson Equation on a Cartesian Mesh
,”
Data-Centric Eng.
,
2
, p.
e6
.
29.
Raissi
,
M.
,
Yazdani
,
A.
, and
Karniadakis
,
E.
,
2020
, “
Hidden Fluid Mechanics: Learning Velocity and Pressure Fields From Flow Visualizations
,”
Science
,
367
(
6481
), pp.
1026
1030
.
30.
Rosenkranz
,
A.
,
Marian
,
M.
,
Profito
,
F.
,
Aragon
,
N.
, and
Shah
,
R.
,
2021
, “
The Use of Artificial Intelligence in Tribology—A Perspective
,”
Lubricants
,
9
(
1
).
31.
Karkoub
,
M.
,
Gad
,
O.
, and
Rabie
,
M.
,
1999
, “
Predicting Axial Piston Pump Performance Using Neural Networks
,”
Mech. Mach. Theory
,
34
(
8
), pp.
1211
1226
.
32.
Kornaev
,
A.
,
Kornaev
,
N.
,
Kornaeva
,
E.
, and
Savin
,
L.
,
2017
, “
Application of Artificial Neural Networks to Calculation of Oil Film Reaction Forces and Dynamics of Rotors on Journal Bearings
,”
Int. J. Rotating Machinery
,
2017
, pp.
1
11
.
33.
Gorasso
,
L.
, and
Wang
,
L.
,
2014
, “
Journal Bearing Optimization Using Nonsorted Genetic Algorithm and Artificial Bee Colony Algorithm
,”
Adv. Mech. Eng.
,
2014
.
34.
Navthar
,
R.
,
Halegowda
,
N.
, and
Deshpande
,
S.
,
2012
, “
Pressure Distribution Analysis of Hydrodynamic Journal Bearing Using Artificial Neural Network
,”
Proceedings of the 4th International Conference on Computer and Automation Engineering (ICCAE 2012)
,
Mumbai, India
,
Jan. 14–15
, pp.
153
160
.
35.
Otero
,
J.
,
Ochoa
,
E.
,
Tanarro
,
E.
,
Morgado
,
P.
,
Lantada
,
A.
,
Munoz-Guijosa
,
J.
, and
Sanz
,
J.
,
2013
, “
Artificial Neural Network Approach to Predict the Lubricated Friction Coefficient
,”
Lubrication Sci.
,
26
(
3
), pp.
141
162
.
36.
Pan
,
E.
,
Bevis
,
M.
,
Han
,
F.
,
Zhou
,
H.
, and
Zhu
,
R.
,
2007
, “
Surface Deformation Due to Loading of a Layered Elastic Half-Space: A Rapid Numerical Kernel Based on a Circular Loading Element
,”
Geophys. J. Int.
,
171
(
1
), pp.
11
24
.
37.
Ronneberger
,
O.
,
Fischer
,
P.
, and
Brox
,
T.
,
2015
, “
U-Net: Convolutional Networks for Biomedical Image Segmentation
,”
Proceedings of the 18th International Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015)
,
Munich, Germany
,
Oct. 5–9, 2015
, pp.
234
241
. .
38.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
MIT Press
,
Cambridge, MA
.
39.
Isola
,
P.
,
Zhu
,
J.
,
Zhou
,
T.
, and
Efros
,
A.
,
2017
, “
Image-to-Image Translation With Conditional Adversarial Networks
,”
Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Honolulu, Hawaii
,
July 21–26
, pp.
5967
5976
. .
40.
Abadi
,
M.
,
Agarwal
,
A.
,
Barham
,
P.
,
Brevdo
,
E.
,
Chen
,
Z.
,
Citro
,
C.
,
Corrado
,
G.
, et al
,
2015
, “
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
,” https://research.google/pubs/pub45166.pdf.
41.
Long
,
F.
,
Zhang
,
H.
, and
Feng
,
D.
,
2003
, “Fundamentals of Content-Based Image Retrieval,”
Multimedia Information Retrieval and Management.
,
D.
Feng
,
W.
Siu
, and
H.
Zhang
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
1
26
.
42.
Hernandez-Garcia
,
A.
, and
Konig
,
P.
,
2018
, “
Further Advantages of Data Augmentation on Convolutional Neural Networks
,”
Proceedings of the 27th International Conference on Artificial Neural Networks (ICANN 2018)
,
Rhodes, Greece
,
Oct. 4–7, 2018
, pp.
95
103
. .
43.
Probst
,
P.
,
Boulesteix
,
A.
, and
Bischl
,
B.
,
2019
, “
Tunability: Importance of Hyperparameters of Machine Learning Algorithms
,”
J. Mach. Learn. Res.
,
20
(
53
), pp.
1
32
. http://jmlr.org/papers/v20/18-444.html
44.
Liaw
,
R.
,
Liang
,
E.
, and
Nishihara
,
R.
,
2018
, “
Tune: A Research Platform for Distributed Model Selection and Training
,”
arXiv preprint
. https://arxiv.org/abs/1807.05118
You do not currently have access to this content.