Abstract

When simulating elastohydrodynamic lubrication, two main approaches are usually followed to predict the pressure and fluid film thickness distribution throughout the contact. The conventional approach relies on the Reynolds equation to describe the thin lubricant film, which is coupled to a Boussinesq description of the linear elastic deformation of the solids. A more accurate, yet a time-consuming method is the use of computational fluid dynamics in which the Navier–Stokes equations describe the flow of the thin lubricant film, coupled to a finite element solver for the description of the local contact deformation. This investigation aims at assessing both methods for different lubrication conditions in different elastohydrodynamic lubrication (EHL) regimes and quantify their differences to understand advantages and limitations of both methods. This investigation shows how the results from both approaches deviate for three scenarios: (1) inertial contributions (Re > 1), i.e., thick films, high speed, and low viscosity; (2) high shear stresses leading to secondary flows; and (3) large deformations of the solids leading to inaccuracies of the Boussinesq equation.

References

1.
Grubin
,
A. N.
,
1949
, “
Investigation of the Contact of Machine Components
,”
Central Scientific Research Institute for Technology and Mechanical Engineering (TsNIITMASh)
,
Moscow
.
2.
Moes
,
H.
,
1992
, “
Optimum Similarity Analysis With Applications to Elastohydrodynamic Lubrication
,”
Wear
,
159
(
1
), pp.
57
66
. 10.1016/0043-1648(92)90286-H
3.
Gelinck
,
E.
, and
Schipper
,
D.
,
2000
, “
Calculation of Stribeck Curves for Line Contacts
,”
Tribol. Int.
,
33
(
3
), pp.
175
181
. 10.1016/S0301-679X(00)00024-4
4.
Wiegert
,
B.
,
Hetzler
,
H.
, and
Seemann
,
W.
,
2013
, “
A Simplified Elastohydrodynamic Contact Model Capturing the Nonlinear Vibration Behaviour
,”
Tribol. Int.
,
59
, pp.
79
89
. 10.1016/j.triboint.2012.02.002
5.
Marian
,
M.
,
Bartz
,
M.
,
Wartzack
,
S.
, and
Rosenkranz
,
A.
,
2020
, “
Non-dimensional Groups, Film Thickness Equations and Correction Factors for Elastohydrodynamic Lubrication: A Review
,”
Lubricants
,
8
(
10
), p.
95
. 10.3390/lubricants8100095
6.
Lu
,
H.
,
2006
, “
High Order Finite Element Solution of Elastohydrodynamic Lubrication Problems
,”
Ph.D. thesis
,
University of Leeds, Leeds, UK
.
7.
Habchi
,
W.
,
Eyheramendy
,
D.
,
Vergne
,
P.
, and
Morales-Espejel
,
G.
,
2012
, “
Stabilized Fully-Coupled Finite Elements for Elastohydrodynamic Lubrication Problems
,”
Adv. Eng. Softw.
,
46
(
1
), pp.
4
18
. 10.1016/j.advengsoft.2010.09.010
8.
Schafer
,
C. T.
,
2005
, “
Elastohydrodynamic Lubrication Based on the Navier-Stokes Equations
,”
Ph.D. thesis
,
Liverpool John Moores University, Liverpool, UK
.
9.
Hartinger
,
M.
,
2007
, “
Cfd Modelling of Elastohydrodynamic Lubrication
,”
Ph.D. thesis
,
Imperial College London, London, UK
.
10.
Hajishafiee
,
A.
,
2013
, “
Finite-Volume CFD Modelling of Fluid-Solid Interaction in EHL Contacts
,”
Ph.D. thesis
,
Imperial College London, London, UK
.
11.
Almqvist
,
T.
, and
Larsson
,
R.
,
2002
, “
The Navier-Stokes Approach for Thermal Ehl Line Contact Solutions
,”
Tribol. Int.
,
35
(
3
), pp.
163
170
. 10.1016/S0301-679X(01)00112-8
12.
Peterson
,
W.
,
Russell
,
T.
,
Sadeghi
,
F.
, and
Berhan
,
M. T.
,
2020
, “
A Strongly Coupled Finite Difference Method–Finite Element Method Model for Two-Dimensional Elastohydrodynamically Lubricated Contact
,”
ASME J. Tribol.
,
142
(
5
), p.
051601
. 10.1115/1.4045816
13.
Mertz
,
A. M.
,
2019
, “
Numerical Analysis of Lubricated Contacts
,”
Ph.D. thesis
,
University of Colorado at Denver, CO
.
14.
Wheeler
,
J.-D.
,
Vergne
,
P.
,
Fillot
,
N.
, and
Philippon
,
D.
,
2016
, “
On the Relevance of Analytical Film Thickness Ehd Equations for Isothermal Point Contacts: Qualitative Or Quantitative Predictions?
,”
Friction
,
4
(
4
), pp.
369
379
. 10.1007/s40544-016-0133-7
15.
Srirattayawong
,
S.
,
2014
, “
CFD Study of Surface Roughness Effects on the Thermo-Elastohydrodynamic Lubrication Line Contact Problem
,”
Ph.D. thesis
,
University of Leicester, Leicaster, UK
.
16.
Singh
,
K.
,
Sadeghi
,
F.
,
Russell
,
T.
,
Lorenz
,
S. J.
,
Peterson
,
W.
,
Villarreal
,
J.
, and
Jinmon
,
T.
,
2021
, “
Fluid–Structure Interaction Modeling of Elastohydrodynamically Lubricated Line Contacts
,”
ASME J. Tribol.
,
143
(
9
), p.
091602
. https://doi.org/10.1115/1.4049260
17.
Almqvist
,
T.
, and
Larsson
,
R.
,
2001
, “
Comparison of Reynolds and Navier-Stokes Approaches for Solving Isothermal EHL Line Contacts
,”
Proceedings of the WTC Conference
,
Vienna, Austria
.
18.
Almqvist
,
T.
,
Almqvist
,
A.
, and
Larsson
,
R.
,
2004
, “
A Comparison Between Computational Fluid Dynamic and Reynolds Approaches for Simulating Transient Ehl Line Contacts
,”
Tribol. Int.
,
37
(
1
), pp.
61
69
. 10.1016/S0301-679X(03)00131-2
19.
Rajagopal
,
K.
, and
Szeri
,
A.
,
2003
, “
On An Inconsistency in the Derivation of the Equations of Elastohydrodynamic Lubrication
,”
Proc. R. Soc. London. Ser. A: Math., Phys. Eng. Sci.
,
459
(
2039
), pp.
2771
2786
. 10.1098/rspa.2003.1145
20.
Bayada
,
G.
,
Cid
,
B.
,
García
,
G.
, and
Vázquez
,
C.
,
2013
, “
A New More Consistent Reynolds Model for Piezoviscous Hydrodynamic Lubrication Problems in Line Contact Devices
,”
Appl. Math. Model.
,
37
(
18–19
), pp.
8505
8517
. 10.1016/j.apm.2013.03.072
21.
Hajishafiee
,
A.
,
Kadiric
,
A.
,
Ioannides
,
S.
, and
Dini
,
D.
,
2017
, “
A Coupled Finite-Volume CFD Solver for Two-Dimensional Elasto-Hydrodynamic Lubrication Problems With Particular Application to Rolling Element Bearings
,”
Tribol. Int.
,
109
, pp.
258
273
. 10.1016/j.triboint.2016.12.046
22.
Ono
,
K.
,
2020
, “
Modified Reynolds Equations for Thin Film Lubrication Analysis With High Viscosity Surface Layers on Both Solid Surfaces and Analysis of Micro-Tapered Bearing
,”
Tribol. Int.
,
151
, p.
106515
. 10.1016/j.triboint.2020.106515
23.
Yang
,
Q.
,
Huang
,
P.
, and
Fang
,
Y.
,
2016
, “
A Novel Reynolds Equation of Non-Newtonian Fluid for Lubrication Simulation
,”
Tribol. Int.
,
94
, pp.
458
463
. 10.1016/j.triboint.2015.10.011
24.
Habchi
,
W.
, and
Issa
,
J.
,
2010
, “
A Reduced Full-System Finite Element Approach to the Solution of EHL Problems: Line Contacts
,”
In International Joint Tribology Conference
,
San Francisco, CA
,
Oct. 17–20
, Vol.
44199
, pp.
95
97
.
25.
Habchi
,
W.
, and
Issa
,
J.
,
2017
, “
An Exact and General Model Order Reduction Technique for the Finite Element Solution of Elastohydrodynamic Lubrication Problems
,”
ASME J. Tribol.
,
139
(
5
), p.
051501
. https://doi.org/10.1115/1.4035154
26.
Maier
,
D.
,
Hager
,
C.
,
Hetzler
,
H.
,
Fillot
,
N.
,
Vergne
,
P.
,
Dureisseix
,
D.
, and
Seemann
,
W.
,
2015
, “
A Nonlinear Model Order Reduction Approach to the Elastohydrodynamic Problem
,”
Tribol. Int.
,
82
, pp.
484
492
. 10.1016/j.triboint.2014.02.021
27.
Feldermann
,
A.
,
Neumann
,
S.
, and
Jacobs
,
G.
,
2017
, “
CFD Simulation of Elastohydrodynamic Lubrication Problems With Reduced Order Models for Fluid–Structure Interaction
,”
Tribol.-Mater., Surf. Interfaces
,
11
(
1
), pp.
30
38
. 10.1080/17515831.2017.1279846
28.
Bos
,
J.
,
1995
, “
Frictional Heating of Tribological Contacts
,”
Ph.D. thesis
,
University of Twente, Enschede, The Netherlands
.
29.
Johnson
,
K. L.
, and
Tevaarwerk
,
J.
,
1977
, “
Shear Behaviour of Elastohydrodynamic Oil Films
,”
Proc. R. Soc. London. A. Math. Phys. Sci.
,
356
(
1685
), pp.
215
236
.
30.
Bair
,
S.
, and
Winer
,
W. O.
,
1979
, “
A Rheological Model for Elastohydrodynamic Contacts Based on Primary Laboratory Data
,”
ASME J. Lubr. Tech.
,
101
(
3
), pp.
258
264
. 10.1115/1.3453342
31.
Jacobson
,
B. O.
,
1991
,
Rheology and Elastohydrodynamic Lubrication
, Vol.
19
.
Elsevier
,
Amsterdam
.
32.
Habchi
,
W.
, and
Issa
,
J.
,
2013
, “
Fast and Reduced Full-System Finite Element Solution of Elastohydrodynamic Lubrication Problems: Line Contacts
,”
Adv. Eng. Softw.
,
56
, pp.
51
62
. 10.1016/j.advengsoft.2012.11.009
33.
Faul
,
A.
,
Goodsell
,
G.
, and
Powell
,
M.
,
2005
, “
A Krylov Subspace Algorithm for Multiquadric Interpolation in Many Dimensions
,”
IMA J. Numer. Anal.
,
25
(
1
), pp.
1
24
. 10.1093/imanum/drh021
34.
Gumerov
,
N. A.
, and
Duraiswami
,
R.
,
2007
, “
Fast Radial Basis Function Interpolation Via Preconditioned Krylov Iteration
,”
SIAM J. Sci. Comput.
,
29
(
5
), pp.
1876
1899
. 10.1137/060662083
35.
Beatson
,
R.
,
Powell
,
M. J. D.
, and
Tan
,
A.
,
2007
, “
Fast Evaluation of Polyharmonic Splines in Three Dimensions
,”
IMA J. Numer. Anal.
,
27
(
3
), pp.
427
450
. 10.1093/imanum/drl027
36.
Reynolds
,
O.
,
1886
, “
On the Theory of Lubrication and Its Application to Mr. Beauchamp Tower’s Experiments, Including An Experimental Determination of the Viscosity of Olive Oil.
,”
Proc. R. Soc. London
,
40
(
242–245
), pp.
191
203
. 10.1098/rspl.1886.0021
37.
Bair
,
S. S.
,
2019
,
High Pressure Rheology for Quantitative Elastohydrodynamics
,
Elsevier
,
Amsterdam
.
38.
Gohar
,
R.
,
2001
,
Elastohydrodynamics
,
World Scientific
,
Singapore
.
39.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
40.
Wu
,
S.
,
1986
, “
A Penalty Formulation and Numerical Approximation of the Reynolds-Hertz Problem of Elastohydrodynamic Lubrication
,”
Int. J. Eng. Sci.
,
24
(
6
), pp.
1001
1013
. 10.1016/0020-7225(86)90032-7
41.
Fesanghary
,
M.
, and
Khonsari
,
M.
,
2011
, “
A Modification of the Switch Function in the Elrod Cavitation Algorithm
,”
ASME J. Tribol.
,
133
(
2
), p.
024501
. 10.1115/1.4003484
42.
Anuradha
,
P.
, and
Kumar
,
P.
,
2011
, “
Ehl Line Contact Central and Minimum Film Thickness Equations for Lubricants With Linear Piezoviscous Behavior
,”
Tribol. Int.
,
44
(
10
), pp.
1257
1260
. 10.1016/j.triboint.2011.05.009
43.
Wijnant
,
Y. H.
,
1998
, “
Contact Dynamics in the Field of Elastohydrodynamic Lubrication
,”
Ph.D. thesis
,
University of Twente, Enschede, The Netherlands
.
44.
Barus
,
C.
,
1893
, “
Isothermals, Isopiestics and Isometrics Relative to Viscosity
,”
Am. J. Sci. (1880–1910)
,
45
(
266
), p.
87
. 10.2475/ajs.s3-45.266.87
45.
Roelands
,
C. J. A.
,
1966
, “
Correlational Aspects of the Viscosity-Temperature-Pressure Relationship of Lubricating Oils
,”
Ph.D. thesis
,
Technische Hogeschool te Delft, The Netherlands
.
46.
Dowson
,
D.
, and
Higginson
,
G.
,
1966
,
The Fundamentals of Roller Gear Lubrication Elastohydrodynamic Lubrication
,
Pergamon Press
,
London
.
47.
Pan
,
P.
, and
Hamrock
,
B.
,
1989
, “
Simple Formulas for Performance Parameters used in Elastohydrodynamically Lubricated Line Contacts
”.
48.
Jones Jr
,
W. R.
,
Johnson
,
R. L.
,
Winer
,
W. O.
, and
Sanborn
,
D. M.
,
1975
, “
Pressure-viscosity Measurements for Several Lubricants to 5.5 × 108 Newtons Per Square Meter ( 8 × 104 Psi) and 149 C (300 F)
,”
A S L E Trans.
,
18
(
4
), pp.
249
262
. 10.1080/05698197508982767
49.
Bair
,
S.
,
Khonsari
,
M.
, and
Winer
,
W. O.
,
1998
, “
High-pressure Rheology of Lubricants and Limitations of the Reynolds Equation
,”
Tribol. Int.
,
31
(
10
), pp.
573
586
. 10.1016/S0301-679X(98)00078-4
You do not currently have access to this content.