Abstract

Nonlinear elements found in fluid film journal bearings and their surrounding structures are known to induce sub- and super-synchronous, chaos and thermally induced instability responses in rotor-bearing systems. The current review summarizes the literature on journal bearing induced nonlinear, rotordynamic forces, and responses. Nonlinear, thermo-elasto-hydrodynamic (TEHD) aspects of journal bearings has become increasingly important in high-performance turbomachines. These have significant influence on bearing dynamic performance and thermally induced, rotordynamic instability problems. Techniques for developing TEHD bearing models are discussed in the second section. Nonlinear solution methodology, including bifurcation determination and time and frequency domain methods such as harmonic balance, shooting and continuation, etc., is presented in the third section. Numerical tools to determine nonlinear vibration responses, including chaos, along with examples of bearing induced nonlinear vibrations are presented in the fourth and fifth sections, respectively.

References

1.
Muszynska
,
A.
,
1986
, “
Whirl and Whip—Rotor/Bearing Stability Problems
,”
J. Sound Vib.
,
110
(
3
), pp.
443
462
. 10.1016/S0022-460X(86)80146-8
2.
Muszynska
,
A.
,
1988
, “
Stability of Whirl and Whip in Rotor Bearing System
,”
J. Sound Vib.
,
127
(
1
), pp.
49
64
. 10.1016/0022-460X(88)90349-5
3.
Schweizer
,
B.
,
2009
, “
Oil Whirl, Oil Whip and Whirl/Whip Synchronization Occurring in Rotor Systems With Full-Floating Ring Bearings
,”
Nonlinear Dyn.
,
57
(
4
), pp.
509
532
. 10.1007/s11071-009-9466-3
4.
De Castro
,
H. F.
,
Cavalca
,
K. L.
, and
Nordmann
,
R.
,
2008
, “
Whirl and Whip Instabilities in Rotor-Bearing System Considering a Nonlinear Force
,”
J. Sound Vib.
,
317
(
1-2
), pp.
273
293
. 10.1016/j.jsv.2008.02.047
5.
San Andres
,
L.
, and
Kerth
,
J.
,
2004
, “
Thermal Effects on the Performance of Floating Ring Bearings for Turbochargers
,”
Proc. Inst. Mech. Eng. J.
,
218
(
5
), pp.
437
450
. 10.1243/1350650042128067
6.
Clarke
,
D. M.
,
Fall
,
C.
,
Hayden
,
G. N.
, and
Wilkinson
,
T. S.
,
1992
, “
A Steady-State Model of a Floating Ring Bearing, Including Thermal Effects
,”
ASME J. Tribol.
,
114
(
1
), pp.
141
149
. 10.1115/1.2920852
7.
Suh
,
J.
, and
Palazzolo
,
A. B.
,
2015
, “
Three-Dimensional Thermohydrodynamic Morton Effect Simulation—Part I: Theoretical Model
,”
ASME J. Tribol.
,
136
(
3
), p.
031706
. 10.1115/1.4027309
8.
Suh
,
J.
, and
Palazzolo
,
A. B.
,
2015
, “
Three-Dimensional Dynamic Model of TEHD Tilting-Pad Journal Bearing—Part II: Parametric Studies
,”
ASME J. Tribol.
,
137
(
4
), p.
041704
. 10.1115/1.4030021
9.
Reinhardt
,
E.
, and
Lund
,
J. W.
,
1975
, “
The Influence of Fluid Inertia on the Dynamic Properties of Journal Bearings
,”
ASME J. Lubr. Technol.
,
97
(
2
), pp.
159
165
. 10.1115/1.3452546
10.
San Andres
,
L.
,
1990
, “
Turbulent Hybrid Bearings With Fluid Inertia Effects
,”
ASME J. Tribol.
,
112
(
4
), pp.
699
707
. 10.1115/1.2920318
11.
Childs
,
D.
,
1993
,
Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis
,
John Wiley & Sons
,
New York
.
12.
Adiletta
,
G.
,
Guido
,
A. R.
, and
Rossi
,
C.
,
1996
, “
Chaotic Motions of a Rigid Rotor in Short Journal Bearings
,”
Nonlinear Dyn.
,
10
(
3
), pp.
251
269
. 10.1007/BF00045106
13.
Holt
,
C.
,
San Andres
,
L.
,
Sahay
,
S.
,
Tang
,
P.
,
La Rue
,
G.
, and
Gjika
,
K.
,
2005
, “
Test Response and Nonlinear Analysis of a Turbocharger Supported on Floating Ring Bearings
,”
ASME J. Vib. Acoust.
,
127
(
2
), pp.
107
115
. 10.1115/1.1857922
14.
Tian
,
L.
,
Wang
,
W. J.
, and
Peng
,
Z. J.
,
2013
, “
Nonlinear Effects of Unbalance in the Rotor-Floating Ring Bearing System of Turbochargers
,”
Mech. Syst. Signal Process.
,
34
(
1–2
), pp.
298
320
. 10.1016/j.ymssp.2012.07.017
15.
Tian
,
L.
,
Wang
,
W. J.
, and
Peng
,
Z. J.
,
2011
, “
Dynamic Behaviours of a Full Floating Ring Bearing Supported Turbocharger Rotor With Engine Excitation
,”
J. Sound Vib.
,
330
(
20
), pp.
4851
4874
. 10.1016/j.jsv.2011.04.031
16.
Kim
,
Y. B.
, and
Noah
,
S. T.
,
1990
, “
Bifurcation Analysis for Modified Jeffcott Rotor With Bearing Clearances
,”
Nonlinear Dyn.
,
1
(
3
), pp.
221
241
. 10.1007/BF01858295
17.
Kim
,
Y. B.
, and
Noah
,
S. T.
,
1991
, “
Periodic Response of Multi-Disk Rotors With Bearing Clearances
,”
J. Sound Vib.
,
144
(
3
), pp.
381
395
. 10.1016/0022-460X(91)90558-2
18.
Kim
,
Y. B.
, and
Noah
,
S. T.
,
1991
, “
Response and Bifurcation Analysis of a MDOF Rotor System With a Strong Nonlinearity
,”
Nonlinear Dyn.
,
2
(
3
), pp.
215
234
. 10.1007/BF00045725
19.
Kim
,
Y. B.
, and
Noah
,
S. T.
,
1991
, “
Steady-State Analysis of a Nonlinear Rotor-Housing System
,”
ASME J. Eng. Gas Turbines and Power
,
113
(
4
), pp.
550
556
. 10.1115/1.2906276
20.
Groll
,
G.
, and
Ewins
,
D. J.
,
2001
, “
The Harmonic Balance With Arc-Length Continuation in Rotor/Stator Contact Problems
,”
J. Sound Vib.
,
241
(
2
), pp.
223
233
. 10.1006/jsvi.2000.3298
21.
Nataraj
,
C.
, and
Nelson
,
H. D.
,
1989
, “
Periodic Solutions in Rotor Dynamic Systems With Nonlinear Supports: A General Approach
,”
ASME J. Vib. Acoust. Stress Reliab. Des.
,
111
(
2
), pp.
187
193
. 10.1115/1.3269840
22.
Jean
,
A. N.
, and
Nelson
,
H. D.
,
1990
, “
Periodic Response Investigation of Large Order Non-Linear Rotordynamic Systems Using Collocation
,”
J. Sound Vib.
,
143
(
3
), pp.
473
489
. 10.1016/0022-460X(90)90737-K
23.
Sundararajan
,
P.
, and
Noah
,
S. T.
,
1997
, “
Dynamics of Forced Nonlinear Systems Using Shooting/Arc-Length Continuation Method-Application to Rotor Systems
,”
ASME J. Vib. Acoust.
,
119
(
1
), pp.
9
20
. 10.1115/1.2889694
24.
Sundararajan
,
P.
, and
Noah
,
S. T.
,
1998
, “
An Algorithm for Response and Stability of Large Order Non-Linear Systems—Application to Rotor Systems
,”
J. Sound Vib.
,
214
(
4
), pp.
695
723
. 10.1006/jsvi.1998.1614
25.
Newkirk
,
B. L.
, and
Taylor
,
H. D.
,
1925
, “
Shaft Whipping Due to Oil Action in Journal Bearing
,”
Gen. Electr. Rev.
,
28
(
8
), pp.
559
568
.
26.
Monmousseau
,
P.
,
Fillon
,
M.
, and
Frene
,
J.
,
1997
, “
Transient Thermoelastohydrodynamic Study of Tilting-Pad Journal Bearings—Comparison Between Experimental Data and Theoretical Results
,”
ASME J. Tribol.
,
119
(
3
), pp.
401
407
. 10.1115/1.2833501
27.
Zhao
,
J. Y.
, and
Hahn
,
E. J.
,
1993
, “
Subharmonic, Quasi-Periodic and Chaotic Motions of a Rigid Rotor Supported by an Eccentric Squeeze Film Damper
,”
Proc. Inst. Mech. Eng. Part C
,
207
(
6
), pp.
383
392
. 10.1243/PIME_PROC_1993_207_145_02
28.
Chinta
,
M.
, and
Palazzolo
,
A. B.
,
1998
, “
Stability and Bifurcation of Rotor Motion in a Magnetic Bearing
,”
J. Sound Vib.
,
214
(
5
), pp.
793
803
. 10.1006/jsvi.1998.1549
29.
Wang
,
J. K.
, and
Khonsari
,
M. M.
,
2005
, “
Application of Hopf Bifurcation Theory to Rotor-Bearing Systems With Consideration of Turbulent Effects
,”
Tribol. International
,
39
, pp.
701
714
. 10.1016/j.triboint.2005.07.031
30.
Wang
,
J. K.
, and
Khonsari
,
M. M.
,
2006
, “
Influence of Inlet Oil Temperature on the Instability Threshold of Rotor-Bearing Systems
,”
ASME J. Tribol.
,
128
(
2
), pp.
319
326
. 10.1115/1.2162920
31.
Wang
,
J. K.
, and
Khonsari
,
M. M.
,
2006
, “
Bifurcation Analysis of a Flexible Rotor Supported by Two Fluid-Film Journal Bearings
,”
ASME J. Trobol.
,
128
(
3
), pp.
594
603
. 10.1115/1.2197842
32.
Wang
,
J. K.
, and
Khonsari
,
M. M.
,
2008
, “
Effects of Oil Inlet Pressure and Inlet Position of Axially Grooved Infinitely Long Journal Bearings. Part I: Analytical Solutions and Static Performance
,”
Tribol. Int.
,
41
(
2
), pp.
119
131
. 10.1016/j.triboint.2007.05.005
33.
Wang
,
J. K.
, and
Khonsari
,
M. M.
,
2008
, “
Effects of Oil Inlet Pressure and Inlet Position of Axially Grooved Infinitely Long Journal Bearings. Part II: Nonlinear Instability Analysis
,”
Tribol. Int.
,
41
(
2
), pp.
132
140
. 10.1016/j.triboint.2007.05.006
34.
Boyaci
,
A.
,
Hartmut
,
H.
,
Seemann
,
W.
,
Proppe
,
C.
, and
Wauer
,
J.
,
2009
, “
Analytical Bifurcation Analysis of a Rotor Supported by Floating Ring Bearings
,”
Nonlinear Dyn.
,
57
(
4
), pp.
497
507
. 10.1007/s11071-008-9403-x
35.
Kim
,
S.
, and
Palazzolo
,
A. B.
,
2017
, “
Shooting With Deflation Algorithm-Based Nonlinear Response and Neimark-Sacker Bifurcation and Chaos in Floating Ring Bearing Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
3
), p.
031003
. 10.1115/1.4034733
36.
Kim
,
S.
, and
Palazzolo
,
A. B.
,
2017
, “
Effects of Thermohydrodynamic (THD) Floating Ring Bearing Model on Rotordynamic Bifurcation
,”
Int. J. Non-Lin. Mech.
,
95
, pp.
30
41
. 10.1016/j.ijnonlinmec.2017.05.003
37.
Kim
,
S.
, and
Palazzolo
,
A. B.
,
2018
, “
Bifurcation Analysis of a Rotor Supported by Five-Pad Tilting Pad Journal Bearings Using Numerical Continuation
,”
ASME J. Tribol.
,
140
(
2
), p.
021701
. 10.1115/1.4037699
38.
Monmousseau
,
P.
,
Fillon
,
M.
, and
Frene
,
J.
,
1998
, “
Transient Thermoelastohydrodynamic Study of Tilting-Pad Journal Bearings—Application to Bearing Seizure
,”
ASME J. Tribol.
,
120
(
2
), pp.
319
324
. 10.1115/1.2834429
39.
Kucinschi
,
B.
, and
Fillon
,
M.
,
1999
, “
An Experimental Study of Transient Thermal Effects in a Plain Journal Bearing
,”
ASME J. Tribol.
,
121
(
2
), pp.
327
332
. 10.1115/1.2833940
40.
Deepak
,
J. C.
, and
Noah
,
S. T.
,
1998
, “
Experimental Verification of Subcritical Whirl Bifurcation of a Rotor Supported on a Fluid Film Bearing
,”
ASME J. Tribol.
,
120
(
3
), pp.
605
609
. 10.1115/1.2834593
41.
De Jongh
,
F. M.
, and
Morton
,
P. G.
,
1994
, “
The Synchronous Instability of a Compressor Rotor Due to Bearing Journal Differential Heating
,”
ASME International Gas Turbine and Aeroengine Congress and Exposition
,
Hague, The Netherlands
,
June
, p.
V005T14A002
.
42.
Balbahadur
,
A. C.
,
2001
, “
A Thermoelastohydrodynamic Model of the Morton Effect Operating in Overhung Rotors Supported by Plain or Tilting Pad Journal Bearings
,”
Ph.D. dissertation
,
Virginia Tech
.
43.
Panara
,
D.
,
Baldassarre
,
L.
,
Griffin
,
D.
,
Mattana
,
A.
,
Panconi
,
S.
, and
Meli
,
E.
,
2015
, “
Numerical Prediction and Experimental Validation of Rotor Thermal Instability
,”
Proceedings of the 44th Turbomachinery Symposium
,
Texas A&M, College Station, TX
,
Turbomachinery Laboratories
.
44.
Tong
,
X.
, and
Palazzolo
,
A. B.
,
2018
, “
Measurement and Prediction of the Journal Circumferential Temperature Distribution for the Rotordynamic Morton Effect
,”
ASME J. Tribol.
,
140
(
3
), p.
031702
. 10.1115/1.4038104
45.
Plantegenet
,
T.
,
Arghir
,
M.
,
Hassini
,
M. A.
, and
Jolly
,
P.
,
2020
, “
The Thermal Unbalance Effect Induced by a Journal Bearing in Rigid and Flexible Rotors: Experimental Analysis
,”
Tribol. Trans.
,
63
(
1
), pp.
52
67
. 10.1080/10402004.2019.1658836
46.
Plantegenet
,
T.
,
Arghir
,
M.
, and
Jolly
,
P.
,
2020
, “
Experimental Analysis of the Thermal Unbalance Effect of a Flexible Rotor Supported by a Flexure Pivot Tilting Pad Bearing
,”
Mech. Syst. Signal Process.
,
145
, p.
106
. 10.1016/j.ymssp.2020.106953
47.
Mondy
,
R. E.
,
2005
, “
The Diagnosing and Corrective Actions Taken to Reduce the Effects of Steam Whirl in a General Electric D-11 Steam Turbine
,”
International Symposium for Stability Control of Rotating Machinery ISCORMA-3
,
Cleveland, OH
,
Sept. 19–23
.
48.
Lu
,
X.
,
Khonsari
,
M. M.
, and
Gelink
,
E. R.
,
2006
, “
The Stribeck Curve: Experimental Results and Theoretical Prediction
,”
ASME J. Tribol.
,
128
(
4
), pp.
789
794
. 10.1115/1.2345406
49.
Chu
,
F.
, and
Lu
,
W.
,
2005
, “
Experimental Observation of Nonlinear Vibrations in a Rub-Impact Rotor System
,”
J. Sound Vib.
,
283
(
3–5
), pp.
621
643
. 10.1016/j.jsv.2004.05.012
50.
Wu
,
Y.
,
Feng
,
K.
,
Zhang
,
Y.
,
Liu
,
W.
, and
Li
,
W.
,
2018
, “
Nonlinear Dynamic Analysis of a Rotor-Bearing System with Porous Tilting Pad Bearing Support
,”
Nonlinear Dyn.
,
94
(
2
), pp.
1391
1408
. 10.1007/s11071-018-4431-7
51.
Ramesh
,
J.
, and
Majumdar
,
B. C.
,
1995
, “
Stability of Rough Journal Bearings Using Nonlinear Transient Method
,”
ASME J. Tribol.
,
117
(
4
), pp.
691
695
. 10.1115/1.2831538
52.
Turaga
,
R.
,
Sekhar
,
A. S.
, and
Majumdar
,
B. C.
,
2000
, “
Non-Linear Transient Stability Analysis of a Rigid Rotor Supported on Hydrodynamic Journal Bearings With Rough Surfaces
,”
Tribol. Trans.
,
43
(
3
), pp.
447
452
. 10.1080/10402000008982362
53.
Lin
,
J. R.
,
2007
, “
Application of the Hopf Bifurcation Theory to Limit Cycle Prediction of Short Journal Bearings with Isotropic Roughness Effects
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
221
(
8
), pp.
869
879
. 10.1243/13506501JET310
54.
Lin
,
J. R.
,
2014
, “
The Influences of Longitudinal Surface Roughness on Sub-Critical and Super-Critical Limit Cycles of Short Journal Bearings
,”
Appl. Math. Model.
,
38
(
1
), pp.
392
402
. 10.1016/j.apm.2013.06.024
55.
Tong
,
X.
, and
Palazzolo
,
A. B.
,
2017
, “
Double Overhung Disk and Parameter Effect on Rotordynamic Synchronous Instability—Morton Effect—Part I: Theory and Modeling Approach
,”
ASME J. Tribol.
,
139
(
1
), p.
011705
. 10.1115/1.4033888
56.
Tong
,
X.
, and
Palazzolo
,
A. B.
,
2017
, “
Double Overhung Disk and Parameter Effect on Rotordynamic Synchronous Instability—Morton Effect—Part II: Occurrence and Prevention
,”
ASME J. Tribol.
,
139
(
1
), p.
011706
. 10.1115/1.4033892
57.
Haugaard
,
A. M.
, and
Santos
,
I. F.
,
2010
, “
Multi-Orifice Active Tilting-Pad Journal Bearings—Harnessing of Synergetic Coupling Effects
,”
Tribol. Int.
,
43
(
8
), pp.
1374
1391
. 10.1016/j.triboint.2010.01.009
58.
Zhang
,
C.
,
Jiang
,
J. X.
, and
Cheng
,
H. S.
,
2000
, “
A Study of Dynamically Loaded Finite Journal Bearings in Mixed Lubrication Using a Transient Thermohydrodynamic Analysis
,”
Tribol. Trans.
,
43
(
3
), pp.
459
464
. 10.1080/10402000008982364
59.
Zhang
,
C.
, and
Cheng
,
H. S.
,
2000
, “
Transient Non-Newtonian Thermohydrodynamic Mixed Lubrication of Dynamically Loaded Journal Bearings
,”
ASME J. Tribol.
,
122
(
1
), pp.
156
161
. 10.1115/1.555338
60.
Zhang
,
C.
,
2002
, “
TEHD Behavior of Non-Newtonian Dynamically Loaded Journal Bearings in Mixed Lubrication for Direct Problem
,”
ASME J. Tribol.
,
124
(
1
), pp.
178
185
. 10.1115/1.1396342
61.
Tofighi-Niaki
,
E.
,
Asgharifard-Sharabiani
,
P.
, and
Ahmadian
,
H.
,
2018
, “
Nonlinear Dynamics of a Flexible Rotor on Tilting Pad Journal Bearings Experiencing Rub–Impact
,”
Nonlinear Dyn.
,
94
(
4
), pp.
2937
2956
. 10.1007/s11071-018-4535-0
62.
Jang
,
G. H.
, and
Yoon
,
J. W.
,
2002
, “
Nonlinear Dynamic Analysis of a Hydrodynamic Journal Bearing Considering the Effect of a Rotating or Stationary Herringbone Groove
,”
ASME J. Tribol.
,
124
(
2
), pp.
297
304
. 10.1115/1.1401019
63.
Wang
,
C. C.
,
Yau
,
H. T.
,
Jang
,
M. J.
, and
Yeh
,
Y. L.
,
2007
, “
Theoretical Analysis of the Non-Linear Behavior of a Flexible Rotor Supported by Herringbone Grooved Gas Journal Bearings
,”
Tribol. Int.
,
40
(
3
), pp.
533
541
. 10.1016/j.triboint.2006.05.004
64.
Wang
,
B.
,
Sun
,
Y.
, and
Ding
,
Q.
,
2016
, “
Dynamic Characteristics of the Herringbone Groove Gas Journal Bearings: Numerical Simulations
,”
Shock Vib.
,
2016
, p.
8743016
.
65.
Sinhasan
,
R.
, and
Goyal
,
K. C.
,
1995
, “
Transient Response of a Two-Lobe Journal Bearing Lubricated With Non-Newtonian Lubricant
,”
Tribol. Int.
,
28
(
4
), pp.
233
239
. 10.1016/0301-679X(95)00007-Q
66.
Jagadeesha
,
K. M.
,
Nagaraju
,
T.
,
Sharma
,
S. C.
, and
Jain
,
S. C.
,
2012
, “
3D Surface Roughness Effects on Transient Non-Newtonian Response of Dynamically Loaded Journal Bearings
,”
Tribol. Trans.
,
55
(
1
), pp.
32
42
. 10.1080/10402004.2011.626144
67.
Kushare
,
P. B.
, and
Sharma
,
S. C.
,
2014
, “
Nonlinear Transient Stability Study of Two Lobe Symmetric Hole Entry Worn Hybrid Journal Bearing Operating With Non-Newtonian Lubricant
,”
Tribol. Int.
,
69
, pp.
84
101
. 10.1016/j.triboint.2013.08.014
68.
Hashimoto
,
H.
,
Wada
,
S.
, and
Ito
,
J. I.
,
1987
, “
An Application of Short Bearing Theory to Dynamic Characteristic Problems of Turbulent Journal Bearings
,”
ASME J. Tribol.
,
109
(
2
), pp.
307
314
. 10.1115/1.3261357
69.
Okabe
,
E. P.
, and
Cavalca
,
K. L.
,
2009
, “
Rotordynamic Analysis of Systems With a Non-Linear Model of Tilting Pad Bearings Including Turbulence Effects
,”
Nonlinear Dyn.
,
57
(
4
), pp.
481
495
. 10.1007/s11071-008-9378-7
70.
Paranjpe
,
R. S.
, and
Han
,
T.
,
1995
, “
A Transient Thermohydrodynamic Analysis Including Mass Conserving Cavitation for Dynamically Loaded Journal Bearings
,”
ASME J. Tribol.
,
117
(
3
), pp.
369
378
. 10.1115/1.2831261
71.
Paranjpe
,
R. S.
,
1996
, “
A Study of Dynamically Loaded Engine Bearings Using a Transient Thermohydrodynamic Analysis
,”
Tribol. Trans.
,
39
(
3
), pp.
636
644
. 10.1080/10402009608983577
72.
Fatu
,
A.
,
Hajjam
,
M.
, and
Bonneau
,
D.
,
2006
, “
A New Model of Thermoelastohydrodynamic Lubrication in Dynamically Loaded Journal Bearings
,”
ASME J. Tribol.
,
128
(
1
), pp.
85
95
. 10.1115/1.2114932
73.
Kim
,
B. J.
, and
Kim
,
K. W.
,
2001
, “
Thermo-Elastohydrodynamic Analysis of Connecting Rod Bearing in Internal Combustion Engine
,”
ASME J. Tribol.
,
123
(
3
), pp.
444
454
. 10.1115/1.1353181
74.
Piffeteau
,
S.
,
Souchet
,
D.
, and
Bonneau
,
D.
,
2000
, “
Influence of Thermal and Elastic Deformations on Connecting-Rod Big End Bearing Lubrication Under Dynamic Loading
,”
ASME J. Tribol.
,
122
(
1
), pp.
181
191
. 10.1115/1.555341
75.
Childs
,
D. W.
, and
Saha
,
R.
,
2012
, “
A New, Iterative, Synchronous-Response Algorithm for Analyzing the Morton Effect
,”
ASME J. Eng. Gas. Turb. Power.
,
134
(
7
), p.
072501
. 10.1115/1.4005973
76.
Lee
,
J. G.
, and
Palazzolo
,
A. B.
,
2013
, “
Morton Effect Cyclic Vibration Amplitude Determination for Tilt Pad Bearing Supported Machinery
,”
ASME J. Tribol.
,
135
(
1
), p.
011701
. 10.1115/1.4007884
77.
Tong
,
X.
,
Palazzolo
,
A. B.
, and
Suh
,
J.
,
2016
, “
Rotordynamic Morton Effect Simulation With Transient, Thermal Shaft Bow
,”
ASME J. Tribol.
,
138
(
3
), p.
031705
. 10.1115/1.4032961
78.
Tong
,
X.
, and
Palazzolo
,
A. B.
,
2018
, “
Tilting Pad Gas Bearing Induced Thermal Bow-Rotor Instability (Morton Effect)
,”
Tribol. Int.
,
121
, pp.
269
279
. 10.1016/j.triboint.2018.01.066
79.
Monmousseau
,
P.
, and
Fillon
,
M.
,
2000
, “
Transient Thermoelastohydrodynamic Analysis for Safe Operating Conditions of a Tilting-Pad Journal Bearing During Start-Up
,”
Tribol. Int.
,
33
(
3-4
), pp.
225
231
. 10.1016/S0301-679X(00)00035-9
80.
Gadangi
,
R. K.
, and
Palazzolo
,
A. B.
,
1995
, “
Transient Analysis of Tilt Pad Journal Bearings Including Effects of Pad Flexibility and Fluid Film Temperature
,”
ASME J. Tribol.
,
117
(
2
), pp.
302
307
. 10.1115/1.2831247
81.
Gadangi
,
R. K.
,
Palazzolo
,
A. B.
, and
Kim
,
J.
,
1996
, “
Transient Analysis of Plain and Tilt Pad Journal Bearings Including Fluid Film Temperature Effects
,”
ASME J. Tribol.
,
118
(
2
), pp.
423
430
. 10.1115/1.2831319
82.
Monmousseau
,
P.
,
Fillon
,
M.
, and
Frene
,
J.
,
1998
, “
Transient Thermoelastohydrodynamic Study of Tilting-Pad Journal Bearings Under Dynamic Loading
,”
J. Eng. Gas. Turb. Power.
,
120
(
2
), pp.
405
409
. 10.1115/1.2818137
83.
Monmousseau
,
P.
, and
Fillon
,
M.
,
1999
, “
Frequency Effects on the TEHD Behavior of a Tilting-Pad Journal Bearing Under Dynamic Loading
,”
ASME J. Tribol.
,
121
(
2
), pp.
321
326
. 10.1115/1.2833939
84.
Fillon
,
M.
,
Desbordes
,
H.
,
Frene
,
J.
, and
Chan Hew Wai
,
C.
,
1996
, “
A Global Approach of Thermal Effects Including Pad Deformations in Tilting-Pad Journal Bearings Submitted to Unbalance Load
,”
ASME J. Tribol.
,
118
(
1
), pp.
169
174
. 10.1115/1.2837074
85.
Kim
,
S.
, and
Palazzolo
,
A. B.
,
2019
, “
Pad-Pivot Friction Effect on Nonlinear Response of a Rotor Supported by Tilting-Pad Journal Bearings
,”
ASME J. Tribol.
,
141
(
9
), p.
091701
. 10.1115/1.4043971
86.
Kucinschi
,
B. R.
,
Fillon
,
M.
,
Frene
,
J.
, and
Pascovici
,
M. D.
,
2000
, “
A Transient Thermoelastohydrodynamic Study of Steadily Loaded Plain Journal Bearings Using Finite Element Method Analysis
,”
ASME J. Tribol.
,
122
(
1
), pp.
219
226
. 10.1115/1.555346
87.
El-Butch
,
A. M.
, and
Ashour
,
N. M.
,
2005
, “
Transient Analysis of Misaligned Elastic Tilting-Pad Journal Bearing
,”
Tribol. Int.
,
38
(
1
), pp.
41
48
. 10.1016/j.triboint.2004.05.008
88.
Nilsson
,
L.
,
1978
, “
The Influence of Bearing Flexibility on the Dynamic Performance of Radial Oil Film Bearings
,”
Proc. 5th Leeds-Lyon Sympos. Tribol.
,
9
(
1
), pp.
331
319
.
89.
Desbordes
,
H.
,
Fillon
,
M.
,
Chan Hew Wai
,
C.
, and
Frene
,
J.
,
1994
, “
Dynamic Analysis of Tilting-Pad Journal Bearing—Influence of Pad Deformations
,”
ASME J. Tribol.
,
116
(
3
), pp.
621
627
. 10.1115/1.2928890
90.
Hahn
,
E. J.
, and
Chen
,
P. Y. P.
,
1994
, “
Harmonic Balance Analysis of General Squeeze Film Damped Multidegree-of-Freedom Rotor Bearing Systems
,”
ASME J. Tribol.
,
116
(
3
), pp.
499
507
. 10.1115/1.2928872
91.
Al-shyyab
,
A.
, and
Kahraman
,
A.
,
2005
, “
Non-Linear Dynamic Analysis of a Multi-Mesh Gear Train Using Mid-Term Harmonic Balance Method: Sub-Harmonic Motions
,”
J. Sound Vib.
,
279
(
2
), pp.
417
451
. 10.1016/j.jsv.2003.11.029
92.
Al-shyyab
,
A.
, and
Kahraman
,
A.
,
2005
, “
Non-Linear Dynamic Analysis of a Multi-Mesh Gear Train Using Mid-Term Harmonic Balance Method: Period-One Motions
,”
J. Sound Vib.
,
284
(
2
), pp.
151
172
. 10.1016/j.jsv.2004.06.010
93.
Samoilenko
,
A. M.
, and
Ronto
,
N. I.
,
1979
,
Numerical-Analytic Methods of Investigating Periodic Solutions
,
Mir Publishers
,
Moscow
.
94.
Mees
,
A. I.
,
1981
,
Dynamics of Feedback Systems
,
Wiley
,
New York
.
95.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
2008
,
Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods
,
Wiley
,
New York
.
96.
Brown
,
K. M.
, and
Gearhart
,
W. B.
,
1971
, “
Deflation Techniques for the Calculation of Further Solutions of a Nonlinear System
,”
Numerische Math.
,
16
(
4
), pp.
334
342
. 10.1007/BF02165004
97.
Ojika
,
T.
,
Satoshi
,
W.
, and
Taketomo
,
M.
,
1983
, “
Deflation Algorithm for the Multiple Roots of a System of Nonlinear Equations
,”
J. Math. Anal. Appl.
,
96
(
2
), pp.
463
479
. 10.1016/0022-247X(83)90055-0
98.
Kalantonis
,
V. S.
,
Perdios
,
E. A.
,
Perdious
,
A. E.
,
Ragos
,
O.
, and
Vrahatis
,
M. N.
,
2003
, “
Deflation Techniques for the Determination of Periodic Solutions of a Certain Period
,”
Astrophys. Space Sci.
,
288
(
4
), pp.
489
497
.
99.
Kumar
,
V.
,
2002
,
Introduction to Parallel Computing
,
Addison-Wesley Longman Publishing Co., Inc.
,
Boston
.
100.
Wang
,
Z.
,
Jin
,
X.
,
Zhou
,
Q.
,
Ai
,
X.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2013
, “
An Efficient Numerical Method With a Parallel Computational Strategy for Solving Arbitrarily Shaped Inclusions in Elastoplastic Contact Problems
,”
ASME J. Tribol.
,
135
(
3
), p.
031401
. 10.1115/1.4023948
101.
Chouchane
,
M.
, and
Amamou
,
A.
,
2011
, “
Bifurcation of Limit Cycles in Fluid Film Bearings
,”
Int. J. Non-Linear Mech.
,
46
(
9
), pp.
1258
1264
. 10.1016/j.ijnonlinmec.2011.06.005
102.
Amamou
,
A.
, and
Chouchane
,
M.
,
2014
, “
Nonlinear Stability Analysis of Long Hydrodynamic Journal Bearings Using Numerical Continuation
,”
Mech. Mach. Theory
,
72
, pp.
17
24
. 10.1016/j.mechmachtheory.2013.10.002
103.
Dhooge
,
A.
,
Govaerts
,
W.
, and
Kuznetsov
,
Y. A.
,
2003
, “
MATCONT: A MATLAB Package for Numerical Bifurcation Analysis of ODEs
,”
ACM Trans. Math. Software (TOMS)
,
29
(
2
), pp.
141
164
. 10.1145/779359.779362
104.
Dhooge
,
A.
,
Govaerts
,
W.
,
Kuznetsov
,
Y. A.
,
Meijer
,
H. G. E.
, and
Sautois
,
B.
,
2008
, “
New Features of the Software MatCont for Bifurcation Analysis of Dynamical Systems
,”
Math. Comp. Model. Dyn.
,
14
(
2
), pp.
147
175
. 10.1080/13873950701742754
105.
Boyaci
,
A.
,
Seemann
,
W.
, and
Proppe
,
C.
,
2009
, “
Bifurcation Analysis of a Turbocharger Rotor Supported by Floating Ring Bearings
,”
IUTAM Symposium on Emerging Trends in Rotor Dynamics
,
New Delhi, India
,
Mar. 23–26
.
106.
Chu
,
F.
, and
Zhang
,
Z.
,
1998
, “
Bifurcation and Chaos in a Rub-Impact Jeffcott Rotor System
,”
J. Sound Vib.
,
210
(
1
), pp.
1
18
. 10.1006/jsvi.1997.1283
107.
Nguyen-Schäfer
,
H.
,
2012
,
Rotordynamics of Automotive Turbochargers
,
Springer
,
Berlin
.
108.
Yang
,
J.
, and
Palazzolo
,
A. B.
,
2019
, “
Three-Dimensional Thermo-Elasto-Hydrodynamic Computational Fluid Dynamics Model of a Tilting Pad Journal Bearing—Part I: Static Response
,”
ASME J. Tribol.
,
141
(
6
), p.
061702
. 10.1115/1.4043349
109.
Yang
,
J.
, and
Palazzolo
,
A. B.
,
2019
, “
Three-Dimensional Thermo-Elasto-Hydrodynamic Computational Fluid Dynamics Model of a Tilting Pad Journal Bearing—Part II: Dynamic Response
,”
ASME J. Tribol.
,
141
(
6
), p.
061703
. 10.1115/1.4043350
You do not currently have access to this content.